RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Using Growth and Ionic Contents of Wheat Seedlings as Rapid Screening Tool for Salt Tolerance

        Wajid Mahboob,Muhammad Athar Khan,Muhammad Ubaidullah Shirazi,Saba Mumtaz,Aisha Shereen 한국작물학회 2018 Journal of crop science and biotechnology Vol.21 No.2

        High germination percentage with vigorous early growth is preferred for harvesting good wheat stand under saline soils. Therefore, an attempt for rapid screening of wheat genotypes for salt tolerance was made in this study. Eleven wheat genotypes including salt tolerant check Kiran-95were subjected to salinity (120 and 160 mMNaCl) along with non-saline,control. Results showed a gradual decrease in seed germination and restricted seedling growth in tested wheat genotypes inㅡresponse to increasing NaCl concentration in nutrient solution. Among the genotypes, NIA-AS-14-6 and NIA-AS-14-7 exhibited more sensitivity towards the salt stress at the germination stage but NIA-AS-14-6 performed quite satisfactorily later on at the seedling stage. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 showed better performance in term of root-shoot length, plant biomasses (fresh and dry), K+:Na+ ratio with least Na+ content, and high accumulation of K+ at higher levels of NaCl stress. On the basis of overall results, the categorization of genotypes was carried out as sensitive, moderately tolerant, and tolerant. Wheat genotypes NIA-AS-14-2, NIA-AS-14-4, NIA-AS-14-5, NIA-AS-14-10, and Kiran-95 grouped as tolerant, moderately salt tolerant group comprised of NIA-AS-14-1, NIA-AS-14-3, NIA-AS-14-6, and NIA-AS-14-8, whereas, NIA-AS-14-7 and NIA-AS-14-9 were found sensitive to salt stress. Principal component analysis revealed that components I and II contributed 70 and 16.5%, respectively. All growth parameters are associated with each other except RDW. In addition to growth traits, low Na+ and improved K+ content with better K+:Na+ ratio may be used for screening of salt tolerance in wheat as potential physiological criteria.

      • KCI등재

        Polyethylene Glycol Mediated Osmotic Stress Impacts on Growth and Biochemical Aspects of Wheat (Triticum aestivum L.)

        Summiya Faisal,S. M. Mujtaba,Asma, Wajid Mahboob 한국작물학회 2019 Journal of crop science and biotechnology Vol.22 No.3

        Seed germination and seedling growth establishment are the most critical growth stages, and drought stress imposed at these stages highly limits crop productivity. In this regard, a hydroponic water culture experiment was conducted with the aim to assess the potential of 20 wheat genotypes against drought stress at the seedling stage. Water deficit was induced through polyethylene glycol (PEG-6000), by maintaining two osmotic potentials in water culture medium, i.e. -0.7 MPa (medium water stress) and -1.0 MPa (high water stress). After seed germination, drought stress was applied for 8 days. Seedlings shoot and root length and biomasses were restricted with an increase in osmotic deficit. Photosynthetic pigments and nitrate reductase activity (NRA) of wheat seedlings were reduced, while proline, total soluble sugars, total phenolics, and mineral ions (K+ and Ca2+) were augmented with the rise in water deficiency in most of the genotypes. On the basis of growth and biochemical attributes, six genotypes (NIA-AA-01, NIA-AA-08, NIA-AA-09, NIA-AA-13, NIA-AA-12, and NIA-AA-14) were categorized as drought tolerant, and three as medium tolerant. These genotypes exhibited better growth by showing the least reduction in root and shoot length, and fresh and dry biomasses, as well as modulation in biochemical processes to survive under water deficit. All studied traits indicated tolerance potential of these genotypes against moderate and extreme drought stress, which could also give better growth in arid and semi-arid regions of the country that facing water scarcity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼