RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재후보

        Batch fabrication and characterization of nanostructures for enhanced adhesion

        Michael T. Northen,Kimberly L. Turner 한국물리학회 2006 Current Applied Physics Vol.6 No.3

        This paper describes the realization and characterization of nanofabricated organic looking polymer nanorods, ‘‘organorods,’’ for use in a biomimetic adhesion system. The adhesion system is inspired by the fine hair adhesive motif found in nature and best exemplified by the gecko. The meso- to nanostructure of the gecko’s foot is designed to maximize inelastic surface contact to enhance van der Waals interactions. In this work, cleanroom-based processing techniques have been used for fabrication and characterization of nanostructures for inclusion in a multi-scale system mimicking the natural adhesive. The multi-scale system consists of flexible silicon dioxide platforms, supported by a single silicon pillar, coated with 200 nm in diameter and 4 lm tall polymeric organorods. The organorod surface is altered between hydrophilic and highly-hydrophobic. The adhesive properties between the artificial surface and a 3.175 mm aluminum sphere are measured in a modified nanoindenter. Initial results indicate improved adhesion with the hydrophobic surface over the hydrophilic, further corroborating van der Waals interactions to be the operative force of adhesion and suggesting a reduced cut-off distance in the van der Waals theory

      • Tin-Oxide-Nanowire-Based Electronic Nose Using Heterogeneous Catalysis as a Functionalization Strategy

        Baik, Jeong Min,Zielke, Mark,Kim, Myung Hwa,Turner, Kimberly L.,Wodtke, Alec M.,Moskovits, Martin American Chemical Society 2010 ACS NANO Vol.4 No.6

        <P>An electronic nose (e-nose) strategy is described based on SnO<SUB>2</SUB> nanowire arrays whose sensing properties are modified by changing their operating temperatures and by decorating some of the nanowires with metallic nanoparticles. Since the catalytic processes occurring on the metal nanoparticles depend on the identity of the metal, decorating the semiconducting nanowires with various metal nanoparticles is akin to functionalizing them with chemically specific moieties. Other than the synthesis of the nanowires, all other steps in the fabrication of the e-nose sensors were carried out using top-down microfabrication processes, paving the way to a useful strategy for making low cost, nanowire-based e-nose chips. The sensors were tested for their ability to distinguish three reducing gases (H<SUB>2</SUB>, CO, and ethylene), which they were able to do unequivocally when the data was classified using linear discriminant analysis. The discriminating ability of this e-nose design was not impacted by the lengths or diameters of the nanowires used.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2010/ancac3.2010.4.issue-6/nn100394a/production/images/medium/nn-2010-00394a_0007.gif'></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼