RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Application and utilization of marker assisted selection for biotic stress resistance in hybrid rice (Oryza sativa L.)

        송재영,Sothea Ouk,Franz Marielle Nogoy,Marjohn C. Niño,권순욱,하운구,강권규,조용구 한국식물생명공학회 2016 JOURNAL OF PLANT BIOTECHNOLOGY Vol.43 No.3

        Development of disease resistant plant is one of the important objectives in rice breeding programs because biotic stresses can adversely affect rice growth and yield losses. This study was conducted to identify lines with multiple-resistance genes to biotic stress among 173 hybrid rice breeding lines and germplasms using DNA-based markers. Our results showed that one hybrid rice line [IR98161-2- 1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66)] possessed 5 bacterial blight resistance genes (Xa4, xa5, Xa7, Xa13 and Xa21) while two hybrid rice lines [IR98161-2-1-1-k1-2 (IR86409- 3-1-1-1-1-1/IRBB66) and 7292s (IR75589-31-27-8-33S(S1)/ IR102758B)] possessed 3 bacterial blight resistance genes (Xa4, Xa7 and Xa21, and Xa3, Xa4 and xa5). Molecular survey on rice blast disease revealed that most of these lines had two different resistant genes. Only 11 lines possessed Pib, Pi-5, and Pi-ta. In addition, we further surveyed the distribution of insect resistant genes, such as Bph1, Bph18(t), and Wbph. Three hybrid breeding lines [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66), IR98161-2-1-1-k1-2 (IR86409- 3-1-1-1-1-1/IRBB66), and 7292s (IR75589-31-27-8-33S(S1) /IR102758B)] contained all three resistance genes. Finally, we obtained four hybrid rice breeding lines and germplasms [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), Damm- Noeub Khmau, 7290s, and 7292s (IR75589-31-27-8-33S(S1)/ IR102758B)] possessing six-gene combination. They are expected to provide higher level of multiple resistance to biotic stress. This study is important for genotyping hybrid rice with resistance to diverse diseases and pests. Results obtained in this study suggest that identification of pyramided resistance genes is very important for screening hybrid rice breeding lines and germplasms accurately for disease and pest resistance. We will expand their cultivation safely through bioassays against diseases, pests, and disaster in its main export countries.

      • KCI등재

        Breeding Hybrid Rice with Genes Resistance to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

        김미선,Sothea Ouk,Kuk-Hyun Jung,Yoohan Song,Le Van Trang,Ju-Young Yang,조용구 한국육종학회 2019 Plant Breeding and Biotechnology Vol.7 No.3

        Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

      • KCI등재

        Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay

        ( Me-sun Kim ),( Sothea Ouk ),( Kuk-hyun Jung ),( Yoohan Song ),( Le Van Trang ),( Ju-young Yang ),( Yong-gu Cho ) 한국육종학회 2019 Plant Breeding and Biotechnology Vol.7 No.3

        Developing elite hybrid rice varieties is one important objective of rice breeding programs. Several genes related to male sterilities, restores, and pollinators have been identified through map-based gene cloning within natural variations of rice. These identified genes are good targets for introducing genetic traits in molecular breeding. This study was conducted to breed elite hybrid lines with major genes related to hybrid traits and disease/insect resistance in 240 genetic resources and F1 hybrid combinations of rice. Molecular markers were reset for three major hybrid genes (S5, Rf3, Rf4) and thirteen disease/insect resistant genes (rice bacterial blight resistance genes Xa3, Xa4, xa5, Xa7, xa13, Xa21; blast resistance genes Pita, Pib, Pi5, Pii; brown planthopper resistant genes Bph18(t) and tungro virus resistance gene tsv1). Genotypes were then analyzed using molecular marker-assisted selection (MAS). Biological assay was then performed at the Red River Delta region in Vietnam using eleven F1 hybrid combinations and two control vatieties. Results showed that nine F1 hybrid combinations were highly resistant to rice bacterial blight and blast. Finally, eight F1 hybrid rice varieties with resistance to disease/insect were selected from eleven F1 hybrid combinations. Their characteristics such as agricultural traits and yields were then investigated. These F1 hybrid rice varieties developed with major genes related to hybrid traits and disease/insect resistant genes could be useful for hybrid breeding programs to achieve high yield with biotic and abiotic resistance.

      • KCI등재

        Application and utilization of marker assisted selection for biotic stress resistance in hybrid rice (Oryza sativa L.)

        Song, Jae-Young,Ouk, Sothea,Nogoy, Franz Marielle,Nino, Marjohn C.,Kwon, Soon Wook,Ha, Woongoo,Kang, Kwon-Kyoo,Cho, Yong-Gu The Korean Society of Plant Biotechnology 2016 식물생명공학회지 Vol.43 No.3

        Development of disease resistant plant is one of the important objectives in rice breeding programs because biotic stresses can adversely affect rice growth and yield losses. This study was conducted to identify lines with multiple-resistance genes to biotic stress among 173 hybrid rice breeding lines and germplasms using DNA-based markers. Our results showed that one hybrid rice line [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66)] possessed 5 bacterial blight resistance genes (Xa4, xa5, Xa7, Xa13 and Xa21) while two hybrid rice lines [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66) and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessed 3 bacterial blight resistance genes (Xa4, Xa7 and Xa21, and Xa3, Xa4 and xa5). Molecular survey on rice blast disease revealed that most of these lines had two different resistant genes. Only 11 lines possessed Pib, Pi-5, and Pi-ta. In addition, we further surveyed the distribution of insect resistant genes, such as Bph1, Bph18(t), and Wbph. Three hybrid breeding lines [IR98161-2-1-1-k1-3 (IR86409-3-1-1-1-1-1/IRBB66), IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), and 7292s (IR75589-31-27-8-33S(S1) /IR102758B)] contained all three resistance genes. Finally, we obtained four hybrid rice breeding lines and germplasms [IR98161-2-1-1-k1-2 (IR86409-3-1-1-1-1-1/IRBB66), Damm-Noeub Khmau, 7290s, and 7292s (IR75589-31-27-8-33S(S1)/IR102758B)] possessing six-gene combination. They are expected to provide higher level of multiple resistance to biotic stress. This study is important for genotyping hybrid rice with resistance to diverse diseases and pests. Results obtained in this study suggest that identification of pyramided resistance genes is very important for screening hybrid rice breeding lines and germplasms accurately for disease and pest resistance. We will expand their cultivation safely through bioassays against diseases, pests, and disaster in its main export countries.

      • KCI등재

        Current Applicable DNA Markers for Marker Assisted Breeding in Abiotic and Biotic Stress Tolerance in Rice (Oryza sativa L.)

        ( Franz Marielle Nogoy ),( Jae-young Song ),( Sothea Ouk ),( Shadi Rahimi ),( Soon Wook Kwon ),( Kwon-kyoo Kang ),( Yong-gu Cho ) 한국육종학회 2016 Plant Breeding and Biotechnology Vol.4 No.3

        Abiotic and biotic stresses adversely affect rice (Oryza sativa L.) growth and yield. Conventional breeding is a very effective method to develop tolerant rice variety; however, it takes a decade long to establish a new rice variety. DNA-based markers have a huge potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for rice has provided an abundance of DNA marker-trait associations. The limitations of conventional breeding such as linkage drag and lengthy time consumption can be overcome by utilizing DNA markers in plant breeding. The major applications of DNA markers such as MAS, QTL mapping and gene pyramiding have been surveyed. In this review, we presented the latest markers available for some of the most important abiotic and biotic stresses in rice breeding programs. Achieving a significant impact on crop improvement by marker assisted breeding (MAB) represents the great challenge for agricultural scientists in the next few decades.

      • Molecular Analysis of Genes Related to Tryptophan Biosynthesis and Grain Quality Evaluation in High Tryptophan Rice

        Franz Nogoy,Hye-Jung Lee,Joonki Kim,Marjohn Nino,Me-Sun Kim,Sothea Ouk,Kwon-Kyoo Kang,Illsup Nou,Yong-Gu Cho 한국육종학회 2014 한국육종학회 심포지엄 Vol.2014 No.07

        Fortification with vitamins in crops like rice is a continuing endeavor for geneticists and rice breeders. Tryptophan is one of the essential amino acids needed in human diet. In this study, we developed rice mutant lines using ethyl methane sulfonate (EMS) treatment in Korean cv. Donganbyeo and candidate rice lines were selected by insensitivity to the tryptophan analog, 5-methyltryptophan. One of the mutants has a 20-25 fold higher tryptophan level in mature seeds than wild type. To identify the mutations in anthranilate synthase genes, OASA1 and OASA2 sequences were generated. Moreover, mRNA expression levels of tryptophan biosynthesis related genes were examined. To further qualify the tryptophan fortification in rice, comparative assessment of cooking and eating quality was conducted with mutant lines and wild type. The moisture, viscosity, taste quality, protein content, amylose content and amino acid composition were similar with wild type. However, tryptophan contents in the mutant lines were higher than wild type as we targeted. The mutation present in AS gene of 5MT resistant rice may prove useful for the generation of crops with increased tryptophan contents and the mutation differences in AS sequences can be used for selection of mutant lines with high tryptophan level from large population.

      • High tryptophan rice with an improved eating quality

        Franz Marielle Nogoy,Hye-Jung Lee,Marjohn Nino,Me-Sun Kim,Sothea Ouk,Yu-Jin Jung,Kwon-Kyoo Kang,Ill-sup Nou,Yong-Gu Cho 한국육종학회 2015 한국육종학회 심포지엄 Vol.2015 No.07

        Geneticists and rice breeders are continuing to address solutions to high cases of undernutrition and malnutrition in many parts of the world. Fortification with vitamins in rice is a feasible solution to directly reach consumers who suffer nutritional problems. In this study, we are working on tryptophan, a limiting amino acid in almost all protein sources which are of importance for human nutrition. The present high tryptophan rice lines are much higher tryptophan level in mature seeds than wild type, however, the grain quality is very low. We try to improve the eating quality of the current high tryptophan rice lines by crossing them to popular Korean varieties, Hopumbyeo and Samgwangbyeo. Insensitive lines for tryptophan feedback inhibition are screened by growing in medium containing amino acid analogues, 5-methyl tryptophan. In vitro screening of each progenies enables us to select in each generation the rice lines with tolerance to 5-methyl tryptophan. After a series of in vitro screening and phenotypic selection in the field, the F4 progeny containing the same mutation in ASA2 gene from its parent showed an improvement in its grain quality.

      • Overexpression of CIPK 15 improved tolerance to pre-harvest sprouting in rice

        Dal-A Yu,Hye-Jung Lee,Joonki Kim,Me-Sun Kim,Marjohn Nino,Sothea Ouk,Seong-Dong Kim,Ill-sup Nou,Yong-Gu Cho 한국육종학회 2015 한국육종학회 심포지엄 Vol.2015 No.07

        Since global climate changes drastically, pre-harvest sprouting (PHS) is expected to pose serious problems in rice production. CBL-interacting serine/threonine protein kinases (CIPKs) have been implicated to play important role in regulating various abiotic stresses such as cold, salinity and drought. In this study, to understand the function of this gene under pre-harvest sprouting in rice, a cDNA clone encoding CBL-interacting protein kinase 15 was isolated from rice flowers. We constructed a recombinant vector carrying the CIPK15 under the control of the CaMV 35S promoter and Tnos terminator and transformed into rice using Agrobacterium tumefaciens. Insertion of the gene was verified in transformants using HPT resistance test and genomic PCR. Transcriptional profiling using tissues of wild type, Gopum, revealed expression of the gene in whole plant tissues with level of expression highest in the seeds suggesting possible role in dormancy. Comparative expression analysis of the gene in transgenic and wild type through semi-quantitative RT-PCR and real-time PCR showed higher expression in transgenic rice lines. Moreover, screening in the mist chamber showed overexpression lines that were resistant to the PHS. This result suggests the involvement of CIPK15 in the regulation of pre-harvest sprouting.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼