RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Serotype Distribution and Virulence Profile of Salmonella enterica Serovars Isolated from Food Animals and Humans in Lagos Nigeria

        Ajayi Abraham,Smith Stella,Bode-Sojobi Ibidunni,Kalpy Julien Coulibaly,Jolaiya Tolulope Funbi,Adeleye Adeyemi Isaac 한국미생물·생명공학회 2019 한국미생물·생명공학회지 Vol.47 No.2

        Distribution of Salmonella enterica serovars and their associated virulence determinants is wide-spread among food animals, which are continuously implicated in periodic salmonellosis outbreaks globally. The aim of this study was to determine and evaluate the diversity of five Salmonella serovar virulence genes (invA, pefA, cdtB, spvC and iroN) isolated from food animals and humans. Using standard microbiological techniques, Salmonella spp. were isolated from the feces of humans and three major food animals. Virulence determinants of the isolates were assayed using PCR. Clonal relatedness of the dominant serovar was determined via pulsed-field gel electrophoresis (PFGE) using the restriction enzyme, Xbal. Seventy one Salmonella spp. were isolated and serotyped into 44 serovars. Non-typhoidal Salmonella (NTS; 68) accounted for majority (95.8%) of the Salmonella serovars. Isolates from chicken (34) accounted for 47.9% of all isolates, out of which S. Budapest (14) was predominant (34.8%). However, the dominant S. Budapest serovars showed no genetic relatedness. The invA gene located on SPI-1 was detected in all isolates. Furthermore, 94% of the isolates from sheep harbored the spvC genes. The iroN gene was present in 50%, 100%, 88%, and 91% of isolates from human, chicken, sheep, and cattle, respectively. The pefA gene was detected in 18 isolates from chicken and a single isolate from sheep. Notably, having diverse Salmonella serovars containing plasmid encoded virulence genes circulating the food chain is of public health significance; hence, surveillance is required.

      • SCOPUSKCI등재

        Serotype Distribution and Virulence Profile of Salmonella enterica Serovars Isolated from Food Animals and Humans in Lagos Nigeria

        Abraham, Ajayi,Stella, Smith,Ibidunni, Bode-Sojobi,Coulibaly, Kalpy Julien,Funbi, Jolaiya Tolulope,Isaac, Adeleye Adeyemi The Korean Society for Microbiology and Biotechnol 2019 한국미생물·생명공학회지 Vol.47 No.2

        Distribution of Salmonella enterica serovars and their associated virulence determinants is wide-spread among food animals, which are continuously implicated in periodic salmonellosis outbreaks globally. The aim of this study was to determine and evaluate the diversity of five Salmonella serovar virulence genes (invA, pefA, cdtB, spvC and iroN) isolated from food animals and humans. Using standard microbiological techniques, Salmonella spp. were isolated from the feces of humans and three major food animals. Virulence determinants of the isolates were assayed using PCR. Clonal relatedness of the dominant serovar was determined via pulsed-field gel electrophoresis (PFGE) using the restriction enzyme, Xbal. Seventy one Salmonella spp. were isolated and serotyped into 44 serovars. Non-typhoidal Salmonella (NTS; 68) accounted for majority (95.8%) of the Salmonella serovars. Isolates from chicken (34) accounted for 47.9% of all isolates, out of which S. Budapest (14) was predominant (34.8%). However, the dominant S. Budapest serovars showed no genetic relatedness. The invA gene located on SPI-1 was detected in all isolates. Furthermore, 94% of the isolates from sheep harbored the spvC genes. The iroN gene was present in 50%, 100%, 88%, and 91% of isolates from human, chicken, sheep, and cattle, respectively. The pefA gene was detected in 18 isolates from chicken and a single isolate from sheep. Notably, having diverse Salmonella serovars containing plasmid encoded virulence genes circulating the food chain is of public health significance; hence, surveillance is required.

      • KCI등재

        Simplex PCR Assay for Detection of blaTEM and gyrA Genes, Antimicrobial Susceptibility Pattern and Plasmid Profile of Salmonella spp. Isolated from Stool and Raw Meat Samples in Niger State, Nigeria

        Dickson A. Musa,Kolawole H. Aremu,Abraham Aayi,Stella I. Smith 한국미생물·생명공학회 2020 한국미생물·생명공학회지 Vol.48 No.2

        The global evolution of antibiotic resistance has threatened the efficacy of available treatment options with ravaging impacts observed in developing countries. As a result, investigations into the prevalence of antibiotic resistance and the role of plasmids are crucial. In this study, we investigated the presence and distribution of blaTEM and gyrA genes, plasmid profiles, and the antimicrobial susceptibility pattern of Salmonella strains isolated from raw meat and stool sources across Niger State, Nigeria. Ninety-eight samples, comprising 72 raw meat and 26 stool samples, were screened for Salmonella spp. The antimicrobial susceptibility of Salmonella isolates to 10 commonly used antimicrobial agents was determined using the Kirby- Bauer disc diffusion method. Isolates were further analyzed for plasmids, in addition to PCR amplification of beta-lactamase (blaTEM) and gyrA genes. A total of 31 Salmonella spp. were isolated, with 22 from raw meat (70.97%) and 9 from stool (29.03%). Salmonella spp. with multiple resistance patterns to ceftazidime, cefuroxime, ceftriaxone, erythromycin, ampicillin, cloxacillin, and gentamicin were detected. Ofloxacin and ciprofloxacin were found to be the most effective among the antibiotics tested, with 67.7% and 93.5% susceptible isolates, respectively. Nine (29.03%) isolates harbored plasmids with molecular sizes ranging between 6557 bp and 23137 bp. PCR amplification of gyrA was detected in 1 (3.23%) of the 31 isolates while 28 isolates (90.32%) were positive for blaTEM. This study shows the incidence of antibiotic resistance in Salmonella isolates and the possible role of plasmids; it also highlights the prevalence of ampicillin resistance in this local population.

      • KCI등재

        COVID-19 and the Human Gut Microbiome: An Under-Recognized Association

        Abu Fahad Abbasi,Aleksandra Marinkovic,Stephanie Prakash,Adekunle Sanyaolu,Stella Smith 전남대학교 의과학연구소 2022 전남의대학술지 Vol.58 No.3

        Coronavirus disease 2019 (COVID-19) is an infectious disease with a wide range of respiratory and extrapulmonary symptoms, as well as gastrointestinal symptoms. Despite recent research linking gut microbiota to infectious diseases like influenza, minimal information is known about the gut microbiota’s function in COVID-19 pathogenesis. Studies suggest that dysbiosis of the gut microbiota and gut barrier dysfunction may play a role in COVID-19 pathogenesis by disrupting host immune homeostasis. Regardless of whether patients had taken medication or disease severity, the gut microbiota composition was significantly altered in COVID-19 patients compared to non-COVID-19 individuals. Several gut commensals with recognized immunomodulatory potential, such as Faecalibacterium prausnitzii, Eubacterium rectale, and bifidobacteria, were underrepresented in patients and remained low in samples taken several weeks after disease resolution. Furthermore, even with disease resolution, dysbiosis in the gut microbiota may contribute to chronic symptoms, underscoring the need to learn more about how gut microbes play a role in inflammation and COVID-19.

      • SCOPUSKCI등재

        Simplex PCR Assay for Detection of bla<sub>TEM</sub> and gyrA Genes, Antimicrobial Susceptibility Pattern and Plasmid Profile of Salmonella spp. Isolated from Stool and Raw Meat Samples in Niger State, Nigeria

        Musa, Dickson A.,Aremu, Kolawole H.,Ajayi, Abraham,Smith, Stella I. The Korean Society for Microbiology and Biotechnol 2020 한국미생물·생명공학회지 Vol.48 No.2

        The global evolution of antibiotic resistance has threatened the efficacy of available treatment options with ravaging impacts observed in developing countries. As a result, investigations into the prevalence of antibiotic resistance and the role of plasmids are crucial. In this study, we investigated the presence and distribution of bla<sub>TEM</sub> and gyrA genes, plasmid profiles, and the antimicrobial susceptibility pattern of Salmonella strains isolated from raw meat and stool sources across Niger State, Nigeria. Ninety-eight samples, comprising 72 raw meat and 26 stool samples, were screened for Salmonella spp. The antimicrobial susceptibility of Salmonella isolates to 10 commonly used antimicrobial agents was determined using the KirbyBauer disc diffusion method. Isolates were further analyzed for plasmids, in addition to PCR amplification of beta-lactamase (bla<sub>TEM</sub>) and gyrA genes. A total of 31 Salmonella spp. were isolated, with 22 from raw meat (70.97%) and 9 from stool (29.03%). Salmonella spp. with multiple resistance patterns to ceftazidime, cefuroxime, ceftriaxone, erythromycin, ampicillin, cloxacillin, and gentamicin were detected. Ofloxacin and ciprofloxacin were found to be the most effective among the antibiotics tested, with 67.7% and 93.5% susceptible isolates, respectively. Nine (29.03%) isolates harbored plasmids with molecular sizes ranging between 6557 bp and 23137 bp. PCR amplification of gyrA was detected in 1 (3.23%) of the 31 isolates while 28 isolates (90.32%) were positive for bla<sub>TEM</sub>. This study shows the incidence of antibiotic resistance in Salmonella isolates and the possible role of plasmids; it also highlights the prevalence of ampicillin resistance in this local population.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼