RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Cepharanthine Enhances TRAIL-Mediated Apoptosis Through STAMBPL1-Mediated Downregulation of Survivin Expression in Renal Carcinoma Cells

        Shahriyar, Sk Abrar,Woo, Seon Min,Seo, Seung Un,Min, Kyoung-jin,Kwon, Taeg Kyu MDPI 2018 INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES Vol.19 No.10

        <P>Cepharanthine (CEP) is a natural plant alkaloid, and has anti-inflammatory, antineoplastic, antioxidative and anticancer properties. In this study, we investigated whether CEP could sensitize renal carcinoma Caki cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. CEP alone and TRAIL alone had no effect on apoptosis. However, combined CEP and TRAIL treatment markedly enhanced apoptotic cell death in cancer cells, but not in normal cells. CEP induced downregulation of survivin and cellular-FLICE inhibitory protein (c-FLIP) expression at post-translational levels. Ectopic expression of survivin blocked apoptosis by combined treatment with CEP plus TRAIL, but not in c-FLIP overexpression. Interestingly, CEP induced survivin downregulation through downregulation of deubiquitin protein of STAM-binding protein-like 1 (STAMBPL1). Overexpression of STAMBPL1 markedly recovered CEP-mediated survivin downregulation. Taken together, our study suggests that CEP sensitizes TRAIL-mediated apoptosis through downregulation of survivin expression at the post-translational levels in renal carcinoma cells.</P>

      • KCI등재

        Arylquin 1, a potent Par‑4 secretagogue, induces lysosomal membrane permeabilization‑mediated non‑apoptotic cell death in cancer cells

        Kyoung‑jin Min,Sk Abrar Shahriyar,권택규 한국독성학회 2020 Toxicological Research Vol.36 No.2

        Arylquin 1, a small-molecule prostate-apoptosis-response-4 (Par-4) secretagogue, targets vimentin to induce Par-4 secretion. Secreted Par-4 binds to its receptor, 78-kDa glucose-regulated protein (GRP78), on the cancer cell surface and induces apoptosis. In the present study, we investigated the molecular mechanisms of arylquin 1 in cancer cell death. Arylquin 1 induces morphological changes (cell body shrinkage and cell detachment) and decreases cell viability in various cancer cells. Arylquin 1-induced cell death is not inhibited by apoptosis inhibitors (z-VAD-fmk, a pan-caspase inhibitor), necroptosis inhibitors (necrostatin-1), and paraptosis inhibitors. Furthermore, arylquin 1 significantly induces reactive oxygen species levels, but antioxidants [N-acetyl-l-cysteine and glutathione ethyl ester] do not inhibit arylquin 1-induced cell death. Furthermore, Par-4 knock-down by small interfering RNA confers no effect on cytotoxicity in arylquin 1-treated cells. Interestingly, arylquin 1 induces lysosomal membrane permeabilization (LMP), and cathepsin inhibitors and overexpression of 70-kDa heat shock protein (HSP70) markedly prevent arylquin 1-induced cell death. Therefore, our results suggest that arylquin 1 induces non-apoptotic cell death in cancer cells through the induction of LMP.

      • KCI등재

        Elucidation for modulation of death receptor (DR) 5 to strengthen apoptotic signals in cancer cells

        Kyoung-jin Min,Seon Min Woo,Sk Abrar Shahriyar,Taeg Kyu Kwon 대한약학회 2019 Archives of Pharmacal Research Vol.42 No.1

        The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis via death receptor (DR) 4 or DR5 preferentially in cancer cells, and not in normal cells with relatively high decoy receptor expression. However, multiple mechanisms in cancer cells induce resistance to DRs-mediated apoptosis. Therefore, understanding of molecular mechanisms for resistance to DRs-mediated apoptosis can find the strategy to increase sensitivity. Although multiple proteins are involved in resistance to DRs-mediated apoptosis, we focus on modulation of DR5 to overcome resistance. Here, we discuss regulation of DR5 expression or activation by epigenetic modification, transcription factor at the transcriptional levels, micro RNA and RNA-binding proteins at the posttranscriptional levels, and ubiquitination and glycosylation at the post-translational levels. In addition, we also mention about relationship between localization of DR5 and death signaling activation. The purpose of this review is to help understand relationship between regulatory mechanisms of DR5 and resistance to TRAIL or DRs-targeted agonist monoclonal antibodies, and to develop innovative anticancer therapies through regulation of DR5 signaling.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼