RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        BRCA1 and MicroRNAs: Emerging Networks and Potential Therapeutic Targets

        Suhwan Chang,Shyam K. Sharan 한국분자세포생물학회 2012 Molecules and cells Vol.34 No.5

        BRCA1 is a well-known tumor suppressor implicated in familial breast and ovarian cancer. Since its cloning in 1994, numerous studies have established BRCA1’s role in diverse cellular and biochemical processes, such as DNA damage repair, cell cycle control, and transcriptional regulation as well as ubiquitination. In addition, a number of recent studies have functionally linked this tumor suppressor to another important cellular regulator, microRNAs, which are short (19-22 nt) RNAs that were discovered in the nematode in 1993. Soon their presence and function were validated in mammals, and since then, the role of microRNAs has been actively investigated in almost all biological processes, including cancer. In this review, we will describe recent progress in the understanding of the BRCA1 function through microRNAs and the role of microRNAs in regulating BRCA1, with emphasis on the implication of these processes on the development and progression of cancer. We will also discuss the therapeutic potential of microRNA mimics or inhibitors of microRNAs to affect BRCA1 function.

      • microRNA-155 positively regulates glucose metabolism via PIK3R1-FOXO3a-cMYC axis in breast cancer

        Kim, Sinae,Lee, Eunji,Jung, Jaeyun,Lee, Jong Won,Kim, Hee Jung,Kim, Jisun,Yoo, Hyun ju,Lee, Hee Jin,Chae, Sun Young,Jeon, Sang Min,Son, Byung Ho,Gong, Gyungyup,Sharan, Shyam K,Chang, Suhwan Nature Publishing Group UK 2018 Oncogene Vol.37 No.22

        <P>MicroRNA is an endogenous, small RNA controlling multiple target genes and playing roles in various biological processes including tumorigenesis. Here, we addressed the function of miR-155 using LC-MS/MS-based metabolic profiling of miR-155 deficient breast cancer cells. Our results revealed the loss of miR-155 hampers glucose uptake and glycolysis, via the down-regulation of glucose transporters and metabolic enzymes including HK2, PKM2, and LDHA. We showed this is due to the down-regulation of cMYC, controlled through phosphoinositide-3-kinase regulatory subunit alpha (PIK3R1)-PDK1/AKT-FOXO3a pathway. UTR analysis of the PIK3R1 and FOXO3a indicated miR-155 directly represses these genes. A stable expression of miR-155 in patient-derived cells (PDCs) showed activated glucose metabolism whereas a stable inhibition of miR-155 reduced in vivo tumor growth with retarded glucose metabolism. Furthermore, analysis of 50 triple-negative breast cancer (TNBC) specimens and specific uptake value (SUV) of PET images revealed a positive correlation between miR-155 level and glucose usage in human breast tumors via PIK3R1-PDK/AKT-FOXO3a-cMYC axis. Collectively, these data demonstrate the miR-155 is a key regulator of glucose metabolism in breast cancer.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼