RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Upright-standing SnO<sub>2</sub> nanowalls: Fabrication, dual-photosensitization and photovoltaic properties

        Shinde, D.V.,Lim, I.,Kim, C.S.,Lee, J.K.,Mane, R.S.,Han, S.H. North Holland ; Elsevier Science Ltd 2012 Chemical physics letters Vol.542 No.-

        We report on fabrication of upright-standing SnO<SUB>2</SUB> nanowalls aligned on FTO substrates by a facile wet chemical method at low temperature. These nanowalls are dual-photosensitized with CdS quantum dots and Z907 dye molecules in order to construct panchromatic dye-sensitized solar cells. We demonstrate that thin CdS quantum dot layer not only acts as a blocking layer preventing recombination of charge carriers, but also contributes as a light absorber. A 158% improvement in power conversion efficiency is observed, which is attributed to improved light absorption, reduced recombination and improved charge collection in presence of CdS quantum dot interlayer.

      • Direct growth of WO<sub>3</sub> nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor

        Shinde, Pragati A.,Seo, Youngho,Ray, Chaiti,Jun, Seong Chan Elsevier 2019 ELECTROCHIMICA ACTA Vol.308 No.-

        <P><B>Abstract</B></P> <P>The rational design and development of highly conductive hierarchical nanostructured materials are of great importance to improve the electrochemical performance of supercapacitors. Great efforts have been committed to the development of positive electrodes for asymmetric supercapacitors (ASC). However, it is still necessary to develop better negative electrodes for practical applications. In present investigation, a multi-walled carbon nanotubes-tungsten trioxide (MWCNT-WO<SUB>3</SUB>) hybrid nanostructure is prepared as a negative electrode for ASC. The MWCNT-WO<SUB>3</SUB> hybrid electrode is prepared using a simple two-step approach, which involves coating of MWCNTs on carbon cloth substrates followed by hydrothermal treatment to deposit WO<SUB>3</SUB> nanorods on the MWCNT-coated carbon cloth. The MWCNT-WO<SUB>3</SUB> hybrid electrode exhibits a maximum specific capacitance (areal capacitance) of 429.6 F g<SUP>−1</SUP> (1.55 F cm<SUP>−2</SUP>) and capacity retention of 94.3% after 5000 cycles, which are higher than the 155.6 F g<SUP>−1</SUP> (0.43 F cm<SUP>−2</SUP>) and 84.9% shown by pristine WO<SUB>3</SUB> in 1 M LiClO<SUB>4</SUB> electrolyte. A flexible all-solid-state ASC is self-assembled with MWCNT-WO<SUB>3</SUB> as a negative electrode, MnO<SUB>2</SUB> as a positive electrode, and PVA-LiClO<SUB>4</SUB> as a gel electrolyte. The MnO<SUB>2</SUB>//MWCNT-WO<SUB>3</SUB> ASC achieve specific capacitance of 145.6 F g<SUP>−1</SUP> at a current of 2 mA and specific energy of 39.63 Wh kg<SUP>−1</SUP> at a specific power of 546 W kg<SUP>−1</SUP>. Specifically, the ASC exhibits superior long-term cycling stability (77% over 10000 cycles) and excellent mechanical flexibility with less capacitance loss. These remarkable results demonstrate the potential of using MWCNT-WO<SUB>3</SUB> hybrid nanostructures for the fabrication of high-performance energy storage devices.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Hexagonal WO<SUB>3</SUB> nanorods are uniformly grown on MWCNT coated carbon cloth. </LI> <LI> MWCNT-WO<SUB>3</SUB> hybrid exhibits high specific capacitance of 429.6 F g<SUP>−1</SUP> at 2 mA cm<SUP>−2</SUP>. </LI> <LI> MWCNT-WO<SUB>3</SUB> hybrid maintains 94.3% initial capacitance over 5000 cycles. </LI> <LI> Flexible asymmetric supercapacitor shows high specific energy of 39.63 Wh kg<SUP>−1</SUP>. </LI> </UL> </P>

      • Combinatorial biosynthesis and antibacterial evaluation of glycosylated derivatives of 12-membered macrolide antibiotic YC-17

        Shinde, P.B.,Han, A.R.,Cho, J.,Lee, S.R.,Ban, Y.H.,Yoo, Y.J.,Kim, E.J.,Kim, E.,Song, M.C.,Park, J.W.,Lee, D.G.,Yoon, Y.J. Elsevier Science Publishers 2013 Journal of biotechnology Vol.168 No.2

        Expression plasmids carrying different deoxysugar biosynthetic gene cassettes and the gene encoding a substrate-flexible glycosyltransferase DesVII were constructed and introduced into Streptomyces venezuelae YJ003 mutant strain bearing a deletion of a desosamine biosynthetic (des) gene cluster. The resulting recombinants produced macrolide antibiotic YC-17 analogs possessing unnatural sugars replacing native d-desosamine. These metabolites were isolated and further purified using chromatographic techniques and their structures were determined as d-quinovosyl-10-deoxymethynolide, l-rhamnosyl-10-deoxymethynolide, l-olivosyl-10-deoxymethynolide, and d-boivinosyl-10-deoxymethynolide on the basis of 1D and 2D NMR and MS analyses and the stereochemistry of sugars was confirmed using coupling constant values and NOE correlations. Their antibacterial activities were evaluated in vitro against erythromycin-susceptible and -resistant Enterococcus faecium and Staphylococcus aureus. Substitution with l-rhamnose displayed better antibacterial activity than parent compound YC-17 containing native sugar d-desosamine. The present study on relationships between chemical structures and antibacterial activities could be useful in generation of novel advanced antibiotics utilizing combinatorial biosynthesis approach.

      • SCIESCOPUS

        Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance

        Shinde, S.K.,Kim, D.-Y.,Ghodake, G.S.,Maile, N.C.,Kadam, A.A.,Lee, Dae Sung,Rath, M.C.,Fulari, V.J. Elsevier 2018 Ultrasonics sonochemistry Vol.40 No.1

        <P><B>Abstract</B></P> <P>This paper reports the effect of electron beam irradiation on CuO thin films synthesized by the successive ionic layer adsorption and reaction (SILAR) method on copper foil for supercapacitor and biocompatibility application. Pristine and irradiated samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and electrochemical study. Pristine and irradiated CuO films were pure monoclinic phase, with uniform nanostructures over the whole copper foil. After irradiation, CuO samples had formed innovative nanostructures. Biocompatibility of pristine and irradiated CuO samples suggest that CuO sample is non-toxic and ecofriendly. The specific capacitance of pristine and irradiated CuO strongly depends on surface morphology, and CuO electrodes after irradiation showed superior performance than pristine CuO. The highest specific capacitance of the 20kGy irradiated CuO nanoflowers exceeded 511Fg<SUP>−1</SUP> at 10mVs<SUP>−1</SUP> in 1M KOH electrolyte. Irradiated CuO samples also showed lower ESR, and were superior to other report electrical energy storage materials.</P> <P><B>Highlights</B></P> <P> <UL> <LI> Novel route for the synthesis of pure CuO thin films. </LI> <LI> Different nanostructure of pure CuO and irradiated CuO electrode. </LI> <LI> 20kGy irradiated CuO electrode offer high surface area. </LI> <LI> 20kGy irradiated CuO electrode shows excellent supercapacitive properties. </LI> </UL> </P>

      • SCISCIESCOPUS

        Ultrasound-assisted synthesis of diversely functionalized tetrahydro-1H-Indole-4(5H)-one using Brønsted base silica sodium carbonate (SSC) as a catalyst under solvent-free conditions

        Shinde, Vijay Vilas,Lee, Seung Min,Oh, Jeong Su,Lim, Kwon Taek,Jeong, Yeon Tae Informa UK (TaylorFrancis) 2016 Synthetic communications Vol.46 No.13

        <P>An ultrasound-promoted, environmentally benign, efficient procedure has been developed for the synthesis of biologically active tetrahydro-1H-indol-4(5H)-one using heterogeneous BrOnsted base silica sodium carbonate (SSC) as a catalyst under solvent-free conditions. In comparison to the conventional methods, this efficient green protocol provides remarkable advantages such as good to excellent yields, shorter reaction time, low cost, and easy workup procedure and bypasses the use of hazardous transition-metal catalysts and organic solvents. [GRAPHICS] .</P>

      • Sonochemical FeF<sub>3</sub> catalyzed three-component synthesis of densely functionalized tetrahydroindazolo[3,2-b]quinazoline under solvent-free conditions

        Shinde, V.V.,Jeong, Y.T. Pergamon Press ; Elsevier Science Ltd 2016 Tetrahedron letters: the international organ for t Vol.57 No.33

        A green and efficient procedure has been developed for the synthesis of densely functionalized tetrahydroindazolo[3,2-b]quinazoline catalyzed by iron fluoride under sonication in solvent-free condition. In comparison to the conventional methods, this efficient green protocol provides remarkable advantages such as good to excellent yields, shorter reaction time, low cost, easy work-up procedure, and bypass for use of solvent and column chromatography. One of the important and interesting advantages of this methodology compared to previous method is that acyclic 1,3-dicarbonyl also gives the desired product which was not possible using the previously reported methodologies.

      • Room-temperature successive ion transfer chemical synthesis and the efficient acetone gas sensor and electrochemical energy storage applications of Bi<sub>2</sub>O<sub>3</sub> nanostructures

        Shinde, Pritamkumar V.,Ghule, Balaji G.,Shinde, Nanasaheb M.,Xia, Qi Xun,Shaikh, Shoyebmohamad,Sarode, A. V.,Mane, Rajaram S.,Kim, Kwang Ho The Royal Society of Chemistry 2018 New journal of chemistry Vol.42 No.15

        <P>The acetone gas sensor and electrochemical supercapacitor applications of bismuth oxide (Bi2O3) nanostructures, synthesised using a facile and cost-effective quaternary-beaker mediated successive ion transfer wet chemical method and deposited onto soda-lime-glass (SLG) and Ni-foam substrates, respectively, are explored. The as-deposited Bi2O3 nanostructures on these substrates exhibit polycrystalline nature and a slight change in their surface appearance (<I>i.e.</I> upright-standing nanoplates on SLG and a curvy nanosheet structure on Ni-foam), suggesting the importance of the deposition substrate in developing Bi2O3 morphologies. The Bi2O3 nanoplate gas sensor on the SGL demonstrated a room temperature sensitivity of 41%@100 ppm for acetone gas, whereas the nanosheet structure of Bi2O3 on the Ni-foam elucidated a specific capacitance of 402 F g<SUP>−1</SUP> at 2 mA cm<SUP>−2</SUP>, long-term cyclability, and rate capability with moderate chemical and environmental stability in a 6 M KOH electrolyte solution. The Bi2O3//graphite pencil-type asymmetric supercapacitor device revealed a specific capacitance as high as 43 F g<SUP>−1</SUP>, and an energy density of 13 W h kg<SUP>−1</SUP> at 793 W kg<SUP>−1</SUP> power density, turning a light emitting diode ON, with considerable full-brightness light intensity, during the process of discharging.</P>

      • Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn–Air Batteries

        Shinde, Sambhaji S.,Lee, Chi-Ho,Sami, Abdul,Kim, Dong-Hyung,Lee, Sang-Uck,Lee, Jung-Ho American Chemical Society 2017 ACS NANO Vol.11 No.1

        <P>Rational design of efficient and durable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) electrocatalysts is critical for rechargeable metal–air batteries. Here, we developed a facile strategy for fabricating three-dimensional phosphorus and sulfur codoped carbon nitride sponges sandwiched with carbon nanocrystals (P,S-CNS). These materials exhibited high surface area and superior ORR and OER bifunctional catalytic activities than those of Pt/C and RuO<SUB>2</SUB>, respectively, concerning its limiting current density and onset potential. Further, we tested the suitability and durability of P,S-CNS as the oxygen cathode for primary and rechargeable Zn–air batteries. The resulting primary Zn–air battery exhibited a high open-circuit voltage of 1.51 V, a high discharge peak power density of 198 mW cm<SUP>–2</SUP>, a specific capacity of 830 mA h g<SUP>–1</SUP>, and better durability for 210 h after mechanical recharging. An extraordinary small charge–discharge voltage polarization (∼0.80 V at 25 mA cm<SUP>–2</SUP>), superior reversibility, and stability exceeding prolonged charge–discharge cycles have been attained in rechargeable Zn–air batteries with a three-electrode system. The origin of the electrocatalytic activity of P,S-CNS was elucidated by density functional theory analysis for both oxygen reactions. This work stimulates an innovative prospect for the enrichment of rechargeable Zn–air battery viable for commercial applications such as armamentaria, smart electronics, and electric vehicles.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/ancac3/2017/ancac3.2017.11.issue-1/acsnano.6b05914/production/images/medium/nn-2016-05914q_0007.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/nn6b05914'>ACS Electronic Supporting Info</A></P>

      • A binder-free wet chemical synthesis approach to decorate nanoflowers of bismuth oxide on Ni-foam for fabricating laboratory scale potential pencil-type asymmetric supercapacitor device

        Shinde, N. M.,Xia, Qi Xun,Yun, Je Moon,Singh, Saurabh,Mane, Rajaram S.,Kim, Kwang-Ho Royal Society of Chemistry 2017 Dalton Transactions Vol. No.

        <▼1><P>The synthesis and asymmetric supercapacitor application of a bismuth oxide (Bi2O3) electrode consisting of arranged nano-platelets for evolving a flower-type surface appearance on nickel-foam (Bi2O3–Ni–F) are described.</P></▼1><▼2><P>The present study involves the synthesis of a bismuth oxide (Bi2O3) electrode consisting of an arranged nano-platelets for evolving a flower-type surface appearance on nickel-foam (Bi2O3–Ni–F) by a simple, inexpensive, binder-free and one-step chemical bath deposition (CBD) method, popularly known as a wet chemical method. The as-prepared Bi2O3 on Ni-foam, as an electrode material, demonstrates 557 F g<SUP>−1</SUP> specific capacitance (SC, at 1 mA cm<SUP>−2</SUP>), of which 85% is retained even after 2000 cycles. With specific power density of 500 kW kg<SUP>−1</SUP>, the Bi2O3–Ni–F electrode documents a specific energy density of 80 Wh kg<SUP>−1</SUP>. Furthermore, a portable asymmetric supercapacitor device, <I>i.e.</I> a pencil-type cell consisting of Bi2O3–Ni–F as an anode and graphite as a cathode in 6 M KOH aqueous electrolyte solution, confirms 11 Wh kg<SUP>−1</SUP> and 720 kW kg<SUP>−1</SUP> specific energy and specific power densities, respectively. An easy and a simple synthesis approach for manufacturing a portable laboratory scale pencil-type supercapacitor device is a major outcome of this study, which can also be applied for ternary and quaternary metal oxides for recording an enhanced performance. In addition, we presented a demonstration of lighting a light emitting diode (LED) using a home-made pencil-type supercapacitor device which, finally, has confirmed the scaling and technical potentiality of Bi2O3–Ni–F in energy storage devices.</P></▼2>

      • Sulfur mediated graphitic carbon nitride/S-Se-graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting

        Shinde, S.S.,Sami, A.,Lee, J.H. Pergamon Press ; Elsevier Science Ltd 2016 Carbon Vol.96 No.-

        <P>Development of metal-free catalysts is of huge interest for photocatalytic water splitting using solar energy. Here, we report a composite nano-material consisting of sulfur-incorporated graphitic carbon nitride grown on the surface of sulfur/selenium co-doped graphene (CNS:S-Se-Gr) hybrid as a high-performance metal-free photocatalyst for the degradation of methylene blue (MB) and hydrogen evolution (by water splitting) in the presence of sacrificial donors under visible light illumination. The recorded MB degradation efficiency is about 98% in 3.5 h. The achieved highest hydrogen evolution rates for CNS:S-Se-Gr hybrid in sodium sulfite and lactic acid solution are about 1.58 and 2.59 mmol g(-1) h(-1) respectively. This hybrid material exhibits significantly enhanced photocatalytic H-2 evolution activity (9-fold) compared with that of pristine g-C3N4. Also, we proposed a possible mechanism for charge separation and transfer in the CNS:S-Se-Gr catalyst. Additionally, modulation of the electronic band structure has been investigated. These results suggest that the CNS:S-Se-Gr metal-free hybrid has great potential as a promising photocatalyst for the water splitting. (C) 2015 Elsevier Ltd. All rights reserved.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼