RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

        Chuang, Zhenju,Liu, Shewen,Lu, Yu The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.1

        This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

      • SCIESCOPUSKCI등재

        Influence of second order wave excitation loads on coupled response of an offshore floating wind turbine

        Chuang, Zhenju,Liu, Shewen,Lu, Yu The Society of Naval Architects of Korea 2020 International Journal of Naval Architecture and Oc Vol.12 No.-

        This paper presents an integrated analysis about dynamic performance of a Floating Offshore Wind Turbine (FOWT) OC4 DeepCwind with semi-submersible platform under real sea environment. The emphasis of this paper is to investigate how the wave mean drift force and slow-drift wave excitation load (Quadratic transfer function, namely QTF) influence the platform motions, mooring line tension and tower base bending moments. Second order potential theory is being used for computing linear and nonlinear wave effects, including first order wave force, mean drift force and slow-drift excitation loads. Morison model is utilized to account the viscous effect from fluid. This approach considers floating wind turbine as an integrated coupled system. Two time-domain solvers, SIMA (SIMO/RIFLEX/AERODYN) and FAST are being chosen to analyze the global response of the integrated coupled system under small, moderate and severe sea condition. Results show that second order mean drift force and slow-drift force will drift the floater away along wave propagation direction. At the same time, slow-drift force has larger effect than mean drift force. Also tension of the mooring line at fairlead and tower base loads are increased accordingly in all sea conditions under investigation.

      • KCI등재

        Stability criterion and its calculation for sail-assisted ship

        Yihuai Hu,Juanjuan Tang,Shuye Xue,Shewen Liu 대한조선학회 2015 International Journal of Naval Architecture and Oc Vol.7 No.1

        Stability criterion and its calculation are the crucial issue in the application of sail-assisted ship. However, there is at present no specific criterion and computational methods for the stability of sail-assisted ship. Based on the stability requirements for seagoing ships, the stability criterion of the sail-assisted ships is suggested in this paper. Furthermore, how to calculate the parameters and determine some specific coefficients for the ship stability calculation, as well as how to redraw stability curve are also discussed in this paper. Finally, to give an illustration, the proposed method is applied on a sail assisted-ship model with comments and recommendations for improvement.

      • SCIESCOPUSKCI등재

        Stability criterion and its calculation for sail-assisted ship

        Hu, Yihuai,Tang, Juanjuan,Xue, Shuye,Liu, Shewen The Society of Naval Architects of Korea 2015 International Journal of Naval Architecture and Oc Vol.7 No.1

        Stability criterion and its calculation are the crucial issue in the application of sail-assisted ship. However, there is at present no specific criterion and computational methods for the stability of sail-assisted ship. Based on the stability requirements for seagoing ships, the stability criterion of the sail-assisted ships is suggested in this paper. Furthermore, how to calculate the parameters and determine some specific coefficients for the ship stability calculation, as well as how to redraw stability curve are also discussed in this paper. Finally, to give an illustration, the proposed method is applied on a sail assisted-ship model with comments and recommendations for improvement.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼