RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Polycrystalline silicon thin films prepared by Ni silicide induced crystallization and the dopant effects on the crystallization

        Shanglong Peng,Na Feng,Duokai Hu,Deyan He,변창우,이용우,주승기 한국물리학회 2012 Current Applied Physics Vol.12 No.6

        Intrinsic and doped polycrystalline silicon thin films were grown by the Ni silicide seeds induced crystallization. The Ni first reacted to Si forming a silicide seeds, then these seeds act as nuclei, from which the grains start to grow laterally. Compared with traditional Ni induced lateral crystallization, polycrystalline silicon thin filmwas grown by Ni silicide induced crystallization with low Ni contamination and large grain sizes. It can be found that the Ni silicide induced crystallization rate is accelerated by p-type doping and is decelerated by n-type doping. And the slightly and strongly phosphorous-doped polycrystalline silicon can be obtained with different grain shapes. Also, the sheet resistance of doped polycrystalline silicon decreases with the increasing of the doping atoms. A reasonable explanation is presented for the dopant effects on the growth rate, microstructure and electronic properties of the samples. Intrinsic and doped polycrystalline silicon thin films were grown by the Ni silicide seeds induced crystallization. The Ni first reacted to Si forming a silicide seeds, then these seeds act as nuclei, from which the grains start to grow laterally. Compared with traditional Ni induced lateral crystallization, polycrystalline silicon thin filmwas grown by Ni silicide induced crystallization with low Ni contamination and large grain sizes. It can be found that the Ni silicide induced crystallization rate is accelerated by p-type doping and is decelerated by n-type doping. And the slightly and strongly phosphorous-doped polycrystalline silicon can be obtained with different grain shapes. Also, the sheet resistance of doped polycrystalline silicon decreases with the increasing of the doping atoms. A reasonable explanation is presented for the dopant effects on the growth rate, microstructure and electronic properties of the samples.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼