RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Preparation of ultra-porous graphene oxide using a glucose-mediated hydrothermal method for efficient removal of fluoride ions from water: kinetics, isotherms and co-existing ions studies

        Sahoo Shraban Kumar,Sahoo Jitendra Kumar,Biswal Susanta Kumar,Gagan Kumar Panigrahi 한국탄소학회 2024 Carbon Letters Vol.34 No.1

        Porous graphene oxide (P-GO) was successfully synthesized by using a simple glucose mediated hydrothermal method form prepared graphene oxide (GO). Then the P-GO was characterized by X-ray Powder Diffraction (XRD), Fourier-Transform Infrared (FITR), Raman, Brunauer–Emmett–Teller (BET), Field Emission Scanning Electron Microscopy (FESEM) and Transmission Electron Microscopy (TEM) analysis to determine the crystallinity, surface functionality, surface defect, surface area and porous nature of the material. For the comparative properties studies with P-GO, the synthesised GO was also characterised using the aforementioned analytical techniques. The formation of macroporous 2D sheet-like structure of P-GO with pore size diameters of 0.2–0.5 µm was confirmed by FESEM and TEM images. The surface area of P-GO was found to be 1272 m2/g which is much higher compare to GO (i.e., 172 m2/g) because of porous structure. P-GO was used for the adsorptive removal of F− ions from water using batch adsorption method. The highest adsorption occurs in the pH range of 5–7 with maximum adsorption capacity of 1272 mg/g. The experimental data revealed that the adsorption process obeys Langmuir monolayer isotherm model. The kinetic analysis revealed that the adsorption procedure is extremely rapid and mainly fit to the Pseudo-second-order (PSO) model. The effect of co-existing ions on fluoride adsorption capacity by P-GO decreases in the following order: PO43− > CO32− > SO42− > HCO3− > NO3− > Cl−. The mechanism of adsorption of fluoride onto the P-GO surface includes electrostatic interactions and hydrogen bonding.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼