RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Chemical Compositions and Insecticidal Activity of Eucalyptus urophylla Essential oil Against Culex quinquefasciatus Mosquito

        Rini Pujiarti,Kasmudjo 한국목재공학회 2016 목재공학 Vol.44 No.4

        Eucalyptus oils are widely used as spices, perfume industrial materials, food flavorings, and medicines. Several types of Eucalyptus oils also have insecticidal activity and as carminative. This study investigated the chemical composition, insecticidal (larvicidal and repellent) activity of E. urophylla oil against filarial mosquito Culex quinquefasciatus. E. urophylla oil was obtained from fresh leaves by water-steam distillation with oil yield 1.08%. E. urophylla oil in this study had no color (clear), has odor (typical eucalyptus), with specific gravity 0.941; refractive index 1.465; miscibility in 70% ethanol 1 : 3; and optical rotation (-) 5.83°. The major compounds of the oil were α-pinene (11.73%), 1,8-cineole (49.86%), β-ocimene (6.25%), γ-terpinene (9.11%), and α-terpinyl acetate (7.63%). The result showed the excellent insecticide activity against C. quinquefasciatus. The oil provided larvicidal activity with LC50: 80.21 ppm and LC90: 210.18 ppm, and repellent activity with IC50: 0.82% and IC90: 4.88%. The present study showed the effectiveness of E. urophylla as natural insecticide against C. quinquefasciatus, the mosquito vector of filariasis.

      • KCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        Johanes Pramana Gentur SUTAPA,Ganis Lukmandaru,Sigit SUNARTA,Rini PUJIARTI,Denny Irawati,Rizki ARISANDI,Riska DWIYANNA,Robertus Danu PRIYAMBODO 한국목재공학회 2024 목재공학 Vol.52 No.3

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      • SCOPUSKCI등재

        Utilization of Sapwood Waste of Fast-Growing Teak in Activated Carbon Production and Its Adsorption Properties

        ( Johanes Pramana Gentur Sutapa ),( Ganis Lukmandaru ),( Sigit Sunarta ),( Rini Pujiarti ),( Denny Irawati ),( Rizki Arisandi ),( Riska Dwiyanna ),( Robertus Danu Priyambodo ) 한국목재공학회 2024 목재공학 Vol.52 No.2

        The sapwood portion of fast-growing teak is mostly ignored due to its inferior quality. One of the possibilities for utilizing sapwood waste is to convert it into activated carbon that has good adsorption capabilities. The raw materials used in this research were sapwood of 14-year-old fast-growing teak sapwood (FTS) waste, which was taken from three trees from community forests in Wonosari, Gunungkidul, Yogyakarta Special Region. FTS waste was taken from the bottom of the tree up to a height of 1.3 m. The activation process is conducted with an activation temperature of 750℃, 850℃, and 950℃. The heating duration consists of three variations: 30 min, 60 min, and 90 min. The quality evaluation parameters of activated carbon include yield, moisture content, volatile matter content, ash content, fixed carbon content, adsorption capacity of benzene, adsorption capacity of methylene blue, and adsorption capacity of iodine. The results showed that the activated carbon produced had the following quality parameters: yield of 75.61%; moisture content of 1.27%; volatile matter content of 9.98%; ash content of 5.43%; fixed carbon content of 84.58%; benzene absorption capacity of 8.58%; methylene blue absorption capacity of 87.73 mg/g; and iodine adsorption capacity of 948.19 mg/g. It can be concluded that activated carbon from FTS waste has good iodine adsorption, which fulfilled the SNI 06-3730-1995 quality standard. Due to the iodine adsorption ability of FTS waste activated carbon, the conversion of FTS waste to activated carbon is categorized as a potential method to increase the value of this material.

      • KCI등재

        Conversion of Shoot Waste of Fast-Growing Teak into Activated Carbon and Its Adsorption Properties

        Johanes Pramana Gentur SUTAPA,Ganis Lukmandaru,Sigit SUNARTA,Rini PUJIARTI,Denny Irawati,Rizki ARISANDI,Riska DWIYANNA,Raka Dzikri NURULLAH,Robertus Danu PRIYAMBODO 한국목재공학회 2024 목재공학 Vol.52 No.5

        Shoot waste refers to the parts of trees that are not yet optimally utilized. In this study, we aimed to utilize shoot waste of fast-growing teak (FGT) extracted from the community forest in Wonosari, Gunungkidul, Yogyakarta Special Region, Indonesia by converting it into charcoal, followed by further conversion into activated carbon. This study was conducted with two treatment factors of the activation process, including thermal treatment (750℃, 850℃, and 950℃) and heating period (30, 60, and 90 min), to determine the best condition for the activation process. Our results indicated a significantly effect of the interaction between thermal treatment and heating period on the moisture content, volatile matter content, ash content, fixed carbon content, and adsorption properties of the produced activated carbon. The highest iodine adsorption capacity of activated carbon is 1,102.57 mg/g, which was produced by thermal treatment at 750℃ and heating period of 30 min. This result fulfilled the Indonesian National Standard (SNI 06-3730-1995 quality standard). Furthermore, the quality parameters of the produced activated carbon include: moisture content of 6.13%; volatile matter content of 17.27%; ash content 5.24%; fixed carbon content of 77.49%; benzene removal efficiency of 8.43%; and methylene blue adsorption capacity of 69.66 mg/g. Based on this study, we concluded that shoot waste of FGT could be classified as a prospective material for developing activated carbon for industrial application.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼