RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium

        Choi, Chang Hyuck,Lim, Hyung-Kyu,Chung, Min Wook,Chon, Gajeon,Ranjbar Sahraie, Nastaran,Altin, Abdulrahman,Sougrati, Moulay-Tahar,Stievano, Lorenzo,Oh, Hyun Seok,Park, Eun Soo,Luo, Fang,Strasser, Pete The Royal Society of Chemistry 2018 ENERGY AND ENVIRONMENTAL SCIENCE Vol.11 No.11

        <P>For catalysing dioxygen reduction, iron-nitrogen-carbon (Fe-N-C) materials are today the best candidates to replace platinum in proton-exchange membrane fuel cell (PEMFC) cathodes. Despite tremendous progress in their activity and site-structure understanding, improved durability is critically needed but challenged by insufficient understanding of their degradation mechanisms during operation. Here, we show that FeNxCy moieties in a representative Fe-N-C catalyst are structurally stable but electrochemically unstable when exposed in an acidic medium to H2O2, the main oxygen reduction reaction (ORR) byproduct. We reveal that exposure to H2O2 leaves iron-based catalytic sites untouched but decreases their turnover frequency (TOF) <I>via</I> oxidation of the carbon surface, leading to weakened O2-binding on iron-based sites. Their TOF is recovered upon electrochemical reduction of the carbon surface, demonstrating the proposed deactivation mechanism. Our results reveal for the first time a hitherto unsuspected key deactivation mechanism during the ORR in an acidic medium. This study identifies the N-doped carbon surface as the Achilles' heel during ORR catalysis in PEMFCs. Observed in acidic but not in alkaline electrolytes, these insights suggest that durable Fe-N-C catalysts are within reach for PEMFCs if rational strategies minimizing the amount of H2O2 or reactive oxygen species (ROS) produced during the ORR are developed.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼