RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

        Qi Guo,Zhiyang Shen,Hongxia Yu,Gaofeng Lu,Yong Yu,Xia Liu,Pengyuan Zheng 대한생리학회-대한약리학회 2016 The Korean Journal of Physiology & Pharmacology Vol.20 No.1

        Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-a, IL-1b, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated IkBa and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

      • SCIESCOPUSKCI등재

        Carnosic acid protects against acetaminophen-induced hepatotoxicity by potentiating Nrf2-mediated antioxidant capacity in mice

        Guo, Qi,Shen, Zhiyang,Yu, Hongxia,Lu, Gaofeng,Yu, Yong,Liu, Xia,Zheng, Pengyuan The Korean Society of Pharmacology 2016 The Korean Journal of Physiology & Pharmacology Vol.20 No.1

        Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure. The study aimed to investigate the protective effect of carnosic acid (CA) on APAP-induced acute hepatotoxicity and its underlying mechanism in mice. To induce hepatotoxicity, APAP solution (400 mg/kg) was administered into mice by intraperitoneal injection. Histological analysis revealed that CA treatment significantly ameliorated APAP-induced hepatic necrosis. The levels of both alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were reduced by CA treatment. Moreover, CA treatment significantly inhibited APAP-induced hepatocytes necrosis and lactate dehydrogenase (LDH) releasing. Western blot analysis showed that CA abrogated APAP-induced cleaved caspase-3, Bax and phosphorylated JNK protein expression. Further results showed that CA treatment markedly inhibited APAP-induced pro-inflammatory cytokines TNF-${\alpha}$, IL-$1{\beta}$, IL-6 and MCP-1 mRNA expression and the levels of phosphorylated $I{\kappa}B{\alpha}$ and p65 protein in the liver. In addition, CA treatment reduced APAP- induced hepatic malondialdehyde (MDA) contents and reactive oxygen species (ROS) accumulation. Conversely, hepatic glutathione (GSH) level was increased by administration of CA in APAP-treated mice. Mechanistically, CA facilitated Nrf2 translocation into nuclear through blocking the interaction between Nrf2 and Keap1, which, in turn, upregulated anti-oxidant genes mRNA expression. Taken together, our results indicate that CA facilitates Nrf2 nuclear translocation, causing induction of Nrf2-dependent genes, which contributes to protection from acetaminophen hepatotoxicity.

      • KCI등재

        Ultrafast dynamics control on ablation of Cu using shaped femtosecond pulse trains

        Deng Jiannan,Qi Hongxia,Liu Xinyi,Li Xiaoyi,Tong Qiunan,Lian Zhenzhong,Li Juan,Bo Jinqiu,Fei Dehou,Chen Zhou,Hu Zhan 한국물리학회 2021 Current Applied Physics Vol.26 No.-

        The ablation processes of Cu film are investigated using temporal shaped femtosecond pulse trains. The depth is modulated by changing the number and interval of the sub-pulses. The underlying ultrafast dynamic processes are discussed based on plasma shielding and electron multiple heating mechanisms. When the sub-pulse interval is less than 0.4 ps electron multiple heating is the dominant mechanism, while the plasma shielding dominates the subsequent ablation processes when the sub-pulse interval is larger than 0.4 ps. The curve of depth obtained by three pulse trains shows more significant oscillation as the function of sub-pulse interval under the lowfluence. We propose that the oscillation of depth is due to the coherent phonon oscillation excited by the pulse train. The study provides a basis for giving insight into the ultrafast dynamics for improving micromachining and nano-fabrications using shaped femtosecond pulse trains.

      • KCI등재

        Ferroptosis: A Novel Anti-tumor Action for Cisplatin

        Jipeng Guo,Bingfei Xu,Qi Han,Hongxia Zhou,Yun Xia,Chongwen Gong,Xiaofang Dai,Zhenyu Li,Gang Wu 대한암학회 2018 Cancer Research and Treatment Vol.50 No.2

        Purpose Ferroptosis is a new mode of regulated cell death, which is completely distinct from other cell death modes based on morphological, biochemical, and genetic criteria. This study evaluated the therapeutic role of ferroptosis in classic chemotherapy drugs, including the underlying mechanism. Materials and Methods Cell viability was detected by using the methylthiazoltetrazlium dye uptake method. RNAi was used to knockout iron-responsive element binding protein 2, and polymerase chain reaction, western blot was used to evaluate the efficiency. Intracellular reduced glutathione level and glutathione peroxidases activity were determined by related assay kit. Intracellular reactive oxygen species levels were determined by flow cytometry. Electron microscopy was used to observe ultrastructure changes in cell. Results Among five chemotherapeutic drugs screened in this study, cisplatin was found to be an inducer for both ferroptosis and apoptosis in A549 and HCT116 cells. The depletion of reduced glutathione caused by cisplatin and the inactivation of glutathione peroxidase played the vital role in the underlying mechanism. Besides, combination therapy of cisplatin and erastin showed significant synergistic effect on their anti-tumor activity. Conclusion Ferroptosis had great potential to become a new approach in anti-tumor therapies and make up for some classic drugs, which open up a new way for their utility in clinic.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼