RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core-Shell Nanoparticles

        Yin, Perry T.,Pongkulapa, Thanapat,Cho, Hyeon-Yeol,Han, Jiyou,Pasquale, Nicholas J.,Rabie, Hudifah,Kim, Jong-Hoon,Choi, Jeong-Woo,Lee, Ki-Bum American Chemical Society 2018 ACS APPLIED MATERIALS & INTERFACES Vol.10 No.32

        <P>In this study, we report the use of a multifunctional magnetic core-shell nanoparticle (MCNP), composed of a highly magnetic zinc-doped iron oxide (ZnFe<SUB>2</SUB>O<SUB>4</SUB>) core nanoparticle and a biocompatible mesoporous silica (mSi) shell, for the simultaneous delivery of let-7a microRNA (miRNA) and anticancer drugs (e.g., doxorubicin) to overcome chemoresistance in breast cancer. Owing to the ability of let-7a to repress DNA repair mechanisms (e.g., BRCA1 and BRCA2) and downregulate drug efflux pumps (e.g., ABCG2), delivery of let-7a could sensitize chemoresistant breast cancer cells (MDA-MB-231) to subsequent doxorubicin chemotherapy both in vitro and in vivo. Moreover, the multifunctionality of our MCNPs allows for the monitoring of in vivo delivery via magnetic resonance imaging. In short, we have developed a multifunctional MCNP-based therapeutic approach to provide an attractive method with which to enhance our ability not only to deliver combined miRNA therapeutics with small-molecule drugs in both selective and effective manner but also to sensitize cancer cells for the enhanced treatment via the combination of miRNA replacement therapy using a single nanoplatform.</P> [FIG OMISSION]</BR>

      • Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection

        Lee, Jin-Ho,Choi, Jin-Ha,Chueng, Sy-Tsong Dean,Pongkulapa, Thanapat,Yang, Letao,Cho, Hyeon-Yeol,Choi, Jeong-Woo,Lee, Ki-Bum American Chemical Society 2019 ACS NANO Vol.13 No.8

        <P>The full realization of stem cell-based treatments for neurodegenerative diseases requires precise control and characterization of stem cell fate. Herein, we report a multifunctional magneto-plasmonic nanorod (NR)-based detection platform to address the limitations associated with the current destructive characterization methods of stem cell neurogenesis. Exosomes and their inner contents have been discovered to play critical roles in cell-cell interactions and intrinsic cellular regulations and have received wide attention as next-generation biomarkers. Moreover, exosomal microRNAs (miRNA) also offer an essential avenue for nondestructive molecular analyses of cell cytoplasm components. To this end, our developed nondestructive, selective, and sensitive detection platform has (i) an immunomagnetic active component for exosome isolation and (ii) a plasmonic/metal-enhanced fluorescence component for sensitive exosomal miRNA detection to characterize stem cell differentiation. In a proof-of-concept demonstration, our multifunctional magneto-plasmonic NR successfully detected the expression level of miRNA-124 and characterized neurogenesis of human-induced pluripotent stem cell-derived neural stem cells in a nondestructive and efficient manner. Furthermore, we demonstrated the versatility and feasibility of our multifunctional magneto-plasmonic NRs by characterizing a heterogeneous population of neural cells in an <I>ex vivo</I> rodent model. Collectively, we believe our multifunctional magneto-plasmonic NR-based exosomal miRNA detection platform has a great potential to investigate the function of cell-cell interactions and intrinsic cellular regulators for controlling stem cell differentiation.</P> [FIG OMISSION]</BR>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼