RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 학술지명
        • 주제분류
        • 발행연도
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Photon Upconversion in Crystalline Rubrene: Resonant Enhancement by an Interband State

        Cruz, Chad D.,Choi, Hyun Ho,Podzorov, Vitaly,Chronister, Eric L.,Bardeen, Christopher J. American Chemical Society 2018 The Journal of Physical Chemistry Part C Vol.122 No.31

        <P>Triplet-triplet exciton annihilation after sensitization of the triplet states by a near-infrared (NIR)-absorbing sensitizer enables rubrene to function as a photon upconversion (UC) material. In this paper, we demonstrate an alternate pathway to NIR upconversion in pristine rubrene crystals: resonantly enhanced two-photon absorption via a weakly allowed interband state. We find that all crystalline rubrene samples exhibit NIR-to-visible upconversion that can be easily observed by eye under low-intensity (20 W/cm<SUP>2</SUP>) continuous wave excitation. The amount of continuous wave photoluminescence (PL) is comparable to what is observed under femtosecond pulsed excitation with the same average intensity. A wide range of excitation intensities (<I>I</I>) for the PL power dependence are explored and careful fitting of the intensity dependence of the upconverted PL shows that it has an approximate <I>I</I><SUP>4</SUP> → <I>I</I><SUP>2</SUP> transition. Moreover, there is a pronounced dependence of the per-pulse upconverted PL signal on the laser repetition rate. A four-state kinetic model with a long-lived (∼1 μs) interband state that takes into account fission and fusion dynamics can reproduce both the <I>I</I><SUP>4</SUP> → <I>I</I><SUP>2</SUP> transition and the dependence of the PL on pulse repetition rate. The modeling suggests that this interband state arises from a low-concentration species, possibly a crystal defect or defective rubrene molecules. Several other polyacene crystals (tetracene, diphenylhexatriene, and perylene) measured under the same conditions did not exhibit similar behavior. The observation of resonantly enhanced upconverted PL without the addition of chemically distinct sensitizers suggests that interband states in organic molecular crystals can generate new and possibly useful photophysical behavior.</P> [FIG OMISSION]</BR>

      • Polarization-Dependent Photoinduced Bias-Stress Effect in Single-Crystal Organic Field-Effect Transistors

        Choi, Hyun Ho,Najafov, Hikmet,Kharlamov, Nikolai,Kuznetsov, Denis V.,Didenko, Sergei I.,Cho, Kilwon,Briseno, Alejandro L.,Podzorov, Vitaly American Chemical Society 2017 ACS APPLIED MATERIALS & INTERFACES Vol.9 No.39

        <P>Photoinduced charge transfer between semiconductors and gate dielectrics can occur in organic field-effect transistors (OFETs) operating under illumination, leading to a pronounced bias-stress effect in devices that are normally stable while operating in the dark. Here, we report an observation of a'polarization-dependent photoinduced bias-stress effect in two' prototypical single-crystal OFETs, based on rubrene and tetraphenylbis(indolo{l,2-alpha})quinolin. We find that the decay rate of the source-drain current in these OFETs under, illumination is a periodic function of the polarization angle of incident photoexcitation with respect to the crystal axes, with a periodicity of n. The angular positions of maxima and minima of the bias-stress rate match those of the optical absorption coefficient of the corresponding crystals. The analysis of the effect shows that it stems from a charge transfer of 'hot' holes, photogenerated in the crystal within a very short thermafization length (MLT mu m) from the semiconductor-dielectric interface. The observed phenomenon is a type of intrinsic structure-property relationship, revealing how molecular packing affects parameter drift in organic transistors under illumination. We also demonstrate that a photoinduced charge transfer in OFETs can be used for recording rewritable accumulation channels with an optically defined geometry and resolution, which can be used in a number of potential applications.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼