RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Power spectrum density analysis for the influence of complete denture on the brain function of edentulous patients - pilot study

        Praveen Perumal,Gopi Naveen Cher,Kuttae Viswanathan Anitha,Jetti Ramesh Reddy,Balasubramanium Muthukumar 대한치과보철학회 2016 The Journal of Advanced Prosthodontics Vol.8 No.3

        PURPOSE This pilot study was to find the influence of complete denture on the brain activity and cognitive function of edentulous patients measured through Electroencephalogram (EEG) signals. MATERIALS AND METHODS The study recruited 20 patients aged from 50 to 60 years requiring complete dentures with inclusion and exclusion criteria. The brain function and cognitive function were analyzed with a mental state questionnaire and a 15-minute analysis of power spectral density of EEG alpha waves. The analysis included edentulous phase and post denture insertion adaptive phase, each done before and after chewing. The results obtained were statistically evaluated. RESULTS Power Spectral Density (PSD) values increased from edentulous phase to post denture insertion adaption phase. The data were grouped as edentulous phase before chewing (EEG p1-0.0064), edentulous phase after chewing (EEG p2-0.0073), post denture insertion adaptive phase before chewing (EEG p3-0.0077), and post denture insertion adaptive phase after chewing (EEG p4-0.0096). The acquired values were statistically analyzed using paired t-test, which showed statistically significant results (P<.05). CONCLUSION This pilot study showed functional improvement in brain function of edentulous patients with complete dentures rehabilitation

      • KCI등재

        Computational Kinetic Studies of Pyruvate Metabolism in Carboxydothermus hydrogenoformans Z-2901 for Improved Hydrogen Production

        Rajadurai Chinnasamy Perumal,Ashok Selvaraj,Saranya Ravichandran,Gopal Ramesh Kumar 한국생물공학회 2012 Biotechnology and Bioprocess Engineering Vol.17 No.3

        Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently,hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species,are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover,the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans. Hydrogen is considered as a renewable energy source and it is also regarded as future fuel. Currently,hydrogen production through a biotechnological approach is a research priority. Hydrogenogens, a microbial species,are of significant interest to researchers because of their ability to produce biological hydrogen. Carboxydothermus hydrogenoformans Z-2901 is one among the hydrogenogens that can grow anaerobically by utilizing pyruvate as a carbon source, and can produce molecular hydrogen. In the present study, we performed an in silico kinetic simulation using the available Kyoto Encyclopedia of Genes and Genomes (KEGG) model and reconstructed pyruvate metabolism in C. hydrogenoformans Z-2901. During this metabolism, dissimilation of pyruvate leads to the formation of energy co-factors, such as ATP and NAD+/NADH, and the level of these co-factors influences the specific growth rate of organism and hydrogen production. Our strategy for improving hydrogen production involves maximizing the ATP and NAD+ yield by modification of kinetic properties and adding new reactions in pyruvate metabolism through metabolic pathway reconstruction. Moreover,the influence of phosphoenol pyruvate carboxylase and pyruvate dehydrogenase enzyme concentration on cofactor productions was also simulated. The theoretical molar yield of ATP and NAD+ were obtained as 2.32 and 1.83mM, respectively, from 1 mM/mg of phosphoenol pyruvate (PEP) utilization. A higher yield of ATP is achieved when the PEP level reaches 5 mM/mg. This work also suggests that PEP can be considered as an alternative substrate. In conclusion, the simulation results reported in this paper can be applied to design and evaluate strategies of strain construction for optimal hydrogen yield in C. hydrogenoformans.

      • Posterior Stabilization of Unstable Sacral Fractures: A Single-Center Experience of Percutaneous Sacroiliac Screw and Lumbopelvic Fixation in 67 Cases

        Shetty Ajoy Prasad,Renjith Karukayil Ramakrishnan,Perumal Ramesh,Anand Sri Vijay,Kanna Rishi Mugesh,Rajasekaran Shanmuganathan 대한척추외과학회 2021 Asian Spine Journal Vol.15 No.5

        Study Design: This is a retrospective study. Purpose: Recent advances in intraoperative imaging and closed reduction techniques have led to a shifting trend toward surgical management in every unstable sacral fracture. This study aimed to evaluate the clinicoradiological outcome of the sacroiliac (SI) screw and lumbopelvic fixation (LPF) techniques and thereby delineate the indications for each. Overview of Literature: Optimal management guidelines for unstable sacral fractures are still lacking probably due to the rarity of these injuries and varying fixation trends. Methods: Out of the 67 patients, 40 and 27 were in the SI and LPF groups, respectively. The electronic medical record for each patient was reviewed, including patient demographic data, mode of trauma, coexisting injuries, neurological status (Gibbon’s four-grade system), Injury Severity Score, time from admission to operative stabilization, type of surgical stabilization, complications, return to the operating room, and treatment outcome measures using Majeed’s functional grading system and Matta’s radiological criteria. The minimum follow-up period was 2 years. Results: Noncomminuted longitudinal injuries with normal neurology and acceptable closed reduction have undergone SI screw fixation (n=40). Irreducible, comminuted, or high transverse fractures associated with dysmorphic anatomy or neurodeficit were managed by LPF (n=27). Excellent and good Majeed and Matta scores at 86.57% and 92.54% of the patients, respectively, were postoperatively achieved. Conclusions: Unstable sacral fractures can be effectively managed with percutaneous SI screw including vertically unstable injuries by paying strict attention to preoperative patient selection whereas LPF can be reserved for comminuted fractures, unacceptable closed reduction, associated neurodeficit, lumbosacral dysmorphism, and high transverse fractures.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼