RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Clinical Manifestation and Radiologic Patterns of Spontaneous Cervicocephalic Dissection According to the Anatomic Location: A Single-Center Analysis in Korean Patients

        송윤선,Park Sang Ik,Budianto Pepi,Kwon Boseong,Suh Dae Chul 대한신경중재치료의학회 2022 Neurointervention Vol.17 No.2

        Purpose Spontaneous cervicocephalic dissection (SCAD) is an important cause of stroke and shows various lesion locations and clinical features. The purpose of this study was to analyze the location of SCAD and its clinical and radiologic patterns in Korean patients. Materials and Methods Patients with SCAD who were evaluated between 2013 and 2018 at a tertiary center in Korea were reviewed. We classified and compared the morphological (aneurysm or steno-occlusion) and presenting (hemorrhage or infarction) patterns according to the lesion locations (anterior circulation [AC] vs. posterior circulation [PC]; intradural [ID] vs. extradural [ED]). Results A total of 166 patients were included in this study. The SCAD most commonly occurred in the PC-ID location (65.1%), followed by AC-ID (13.3%), AC-ED (13.3%), and PC-ED (8.4%). Aneurysm and steno-occlusion patterns were observed in 66.9% and 57.8% of the cases, respectively. The aneurysm pattern was significantly more common in the PC-ID location (78.7%) than in other locations. As for the presenting pattern, cerebral infarction was the most common pattern (39.8%), and intracranial hemorrhage was observed only in the ID location (7.2%). Conclusion In Korean patients, PC-ID, especially ID vertebral artery, was the most common location of SCAD, and most cases were accompanied by an aneurysm. It also suggested that these location trends differ by population or ethnicity.

      • KCI등재

        Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia

        Konstantinos Dimitriadis,Athanasios Konstantinou Sfikas,Spyros Kamnis,Pepie Tsolka,Simeon Agathopoulos 대한치과보철학회 2022 The Journal of Advanced Prosthodontics Vol.14 No.2

        PURPOSE. Microstructural and physico-mechanical characterization of highly translucent zirconia, prepared by milling technology (CAD-CAM) and repeated firing cycles, was the main aim of this in vitro study. MATERIALS AND METHODS. Two groups of samples of two commercial highly-translucent yttria-stabilized dental zirconia, VITA YZ-HTWhite (Group A) and Zolid HT + White (Group B), with dimensions according to the ISO 6872 “Dentistry - Ceramic materials”, were prepared. The specimens of each group were divided into two subgroups. The specimens of the first subgroups (Group A1 and Group B1) were merely the sintered specimens. The specimens of the second subgroups (Group A2 and Group B2) were subjected to 4 heat treatment cycles. The microstructural features (microstructure, density, grain size, crystalline phases, and crystallite size) and four mechanical properties (flexural strength, modulus of elasticity, Vickers hardness, and fracture toughness) of the subgroups (i.e. before and after heat treatment) were compared. The statistical significance between the subgroups (A1/A2, and B1/B2) was evaluated by the t-test. In all tests, P values smaller than 5% were considered statistically significant. RESULTS. A homogenous microstructure, with no residual porosity and grains sized between 500 and 450 nm for group A and B, respectively, was observed. Crystalline yttria-stabilized tetragonal zirconia was exclusively registered in the X-ray diffractograms. The mechanical properties decreased after the heat treatment procedure, but the differences were not statistically significant. CONCLUSION. The produced zirconia ceramic materials can be safely (i.e., according to the ISO 6872) used in extensive fixed prosthetic restorations, such as substructure ceramics for three-unit prostheses involving the molar restoration and substructure ceramics for prostheses involving four or more units. Consequently, milling technology is an effective manufacturing technology for producing zirconia substructures for dental fixed all-ceramic prosthetic restorations.

      • Sand particle-Induced deterioration of thermal barrier coatings on gas turbine blades

        Murugan, Muthuvel,Ghoshal, Anindya,Walock, Michael J.,Barnett, Blake B.,Pepi, Marc S.,Kerner, Kevin A. Techno-Press 2017 Advances in aircraft and spacecraft science Vol.4 No.1

        Gas turbines operating in dusty or sandy environment polluted with micron-sized solid particles are highly prone to blade surface erosion damage in compressor stages and molten sand attack in the hot-sections of turbine stages. Commercial/Military fixed-wing aircraft engines and helicopter engines often have to operate over sandy terrains in the middle eastern countries or in volcanic zones; on the other hand gas turbines in marine applications are subjected to salt spray, while the coal-burning industrial power generation turbines are subjected to fly-ash. The presence of solid particles in the working fluid medium has an adverse effect on the durability of these engines as well as performance. Typical turbine blade damages include blade coating wear, sand glazing, Calcia-Magnesia-Alumina-Silicate (CMAS) attack, oxidation, plugged cooling holes, all of which can cause rapid performance deterioration including loss of aircraft. The focus of this research work is to simulate particle-surface kinetic interaction on typical turbomachinery material targets using non-linear dynamic impact analysis. The objective of this research is to understand the interfacial kinetic behaviors that can provide insights into the physics of particle interactions and to enable leap ahead technologies in material choices and to develop sand-phobic thermal barrier coatings for turbine blades. This paper outlines the research efforts at the U.S Army Research Laboratory to come up with novel turbine blade multifunctional protective coatings that are sand-phobic, sand impact wear resistant, as well as have very low thermal conductivity for improved performance of future gas turbine engines. The research scope includes development of protective coatings for both nickel-based super alloys and ceramic matrix composites.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼