RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Synthesis, characterization, and antimicrobial activities of 3-HPAA-Alg-Chi nanoparticles

        Ozdemir, Ozgun O.,Soyer, Ferda Techno-Press 2021 Advances in nano research Vol.11 No.3

        Encapsulation of bioactive compounds (e.g., phenolic acids) into nanoparticles is a well-received technique in the searching for new antimicrobial agents against multidrug-resistant pathogens. Encapsulation can be a good technique to maintain the stability of phenolic acids against environmental conditions. In this study, 3-hydroxyphenylacetic acid (3-HPAA) was encapsulated into alginate-chitosan nanoparticles with the ion gelation technique. The characterization of loaded and unloaded nanoparticles was performed via dynamic light scattering, Fourier transform infrared spectroscopy, and scanning electron microscopy. According to the results, 3-HPAA loaded nanoparticles have spherical shapes with a diameter range of 40-80 nm and an average hydrodynamic diameter of 361.0 ± 69.8 nm. The loading of 3-HPAA was successfully achieved based on the Fourier transform infrared spectra and encapsulation percentage studies. The antimicrobial effect of the nanoparticles in solution forms was tested on P. aeruginosa, S. epidermidis, MRSA, and MSSA. The results demonstrated that the 3-HPAA loaded alginate chitosan nanoparticle solution showed elevated antimicrobial effect due to the pH change by treatment with 1% acetic acid, and it displayed bacteriocidal effects in a strain-specific and dose-dependent manner. Therefore, the 3-HPAA loaded alginate chitosan nanoparticle solution was produced successfully with the bacteriocidal effect against serious pathogenic bacteria.

      • KCI등재후보

        Cyclic behavior of steel I-beams modified by a welded haunch and reinforced with GFRP

        O. Ozgur Egilmez,Deniz Alkan,Timur Ozdemir 국제구조공학회 2009 Steel and Composite Structures, An International J Vol.9 No.5

        Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. Reducing the flange-web slenderness ratios (FSR/WSR) of beams is the most effective way in mitigating local member buckling as stipulated in the latest seismic design specifications. However, existing steel moment frame buildings with beams that lack the adequate slenderness ratios set forth for new buildings are vulnerable to local member buckling and thereby system-wise instability prior to reaching the required plastic rotation capacities specified for new buildings. This paper presents results from a research study investigating the cyclic behavior of steel I-beams modified by a welded haunch at the bottom flange and reinforced with glass fiber reinforced polymers at the plastic hinge region. Cantilever I-sections with a triangular haunch at the bottom flange and flange slenderness ratios higher then those stipulated in current design specifications were analyzed under reversed cyclic loading. Beam sections with different depth/width and flange/web slenderness ratios (FSR/WSR) were considered. The effect of GFRP thickness, width, and length on stabilizing plastic local buckling was investigated. The FEA results revealed that the contribution of GFRP strips to mitigation of local buckling increases with increasing depth/width ratio and decreasing FSR and WSR. Provided that the interfacial shear strength of the steel/GFRP bond surface is at least 15 MPa, GFRP reinforcement can enable deep beams with FSR of 8-9 and WSR below 55 to maintain plastic rotations in the order of 0.02 radians without experiencing any local buckling.

      • KCI등재
      • KCI등재

        The effect of lemon on the essential element concentrations of herbal and fruit teas

        T. Y. Gorgulu,O. D. Ozdemir,A. S. Kipcak,M. B. Piskin,E. M. Derun 한국응용생명화학회 2016 Applied Biological Chemistry (Appl Biol Chem) Vol.59 No.3

        In this study, the effect of lemon addition to the element content of several herbal and fruit teas is investigated. Lemon addition to tea is a traditional cultural practice in many countries. For this purpose, fennel, mint, and sage are selected as herbal teas, and apple, lemon, and rosehip are selected as fruit teas. The essential elements of calcium, cobalt, copper, iron, potassium, magnesium, sodium, phosphorus, selenium, and zinc are determined in the aforementioned teas with and without lemon addition by using an inductively coupled plasma optical emission spectrometer. From the results of the experiments, the lemon addition caused different changes with respect to the tea type. Potassium (1178 ppm) in apple tea with lemon, sodium (215.1 ppm) in fennel tea with lemon, and calcium (81.88 ppm) and magnesium (53.83 ppm) in mint tea with lemon are found to be the four major essential elements in the teas. In general, the elemental contents are increased with the lemon addition for all of the tea types, except for Na in the sage tea.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼