RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Online training and education from the VR-1 reactor—Lessons learned

        Novak Ondrej,Bily Tomas,Huml Ondrej,Sklenka Lubomir,Fejt Filip,Rataj Jan 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.12

        Hands-on education and training is a key part of fixing and developing technology knowledge and is an inherent part of many engineering and scientific curricula. However, access to large complex training facilities, such as nuclear reactor, could be limited by various factors, such as unavailability of those facilities in the region, high traveling costs or harmonization of the schedules of hands-on E&T with theoretical lectures and with the operational schedule of the facility. To handle the issue, several success stories have been reached with the introduction of the Internet Reactor Labs (IRL). The Internet Reactor Labs can strongly contribute to accessibility of training at research reactors and can contribute to improvements in their utilization. The paper describes the development of the Internet Reactor Lab at the VR-1 reactor of the Czech Technical University in Prague. Contrary to single-purpose IRLs, it presents various modalities of online teaching and training in experimental reactor physics and reactor operation in general as well as outreach activities that have been developed in recent years

      • KCI등재

        Geometry Optimization of Dispersed U Mo Fuel for Light Water Reactors

        Novak Ondrej,Suk Pavel,Kobylka Dusan,Sevecek Martin 한국원자력학회 2023 Nuclear Engineering and Technology Vol.55 No.9

        The Uranium/Molybdenum metallic fuel has been proposed as promising advanced fuel concept especially in the dispersed fuel geometry. The fuel is manufactured in the form of small fuel droplets (particles) placed in a fuel pin covered by a matrix. In addition to fuel particles, the pin contains voids necessary to compensate material swelling and release of fission gases from the fuel particles. When investigating this advanced fuel design, two important questions were raised. Can the dispersed fuel performance be analyzed using homogenization without significant inaccuracy and what size of fuel drops should be used for the fuel design to achieve optimal utilization? To answer, 2D burnup calculations of fuel assemblies with different fuel particle sizes were performed. The analysis was supported by an additional 3D fuel pin calculation with the dispersed fuel particle size variations. The results show a significant difference in the multiplication factor between the homogenized calculation and the detailed calculation with precise fuel particle geometry. The recommended fuel particle size depends on the final burnup to be achieved. As shown in the results, for lower burnup levels, larger fuel drops offer better multiplication factor. However, when higher burnup levels are required, then smaller fuel drops perform better.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼