RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Numerical analysis of a complex slope instability: Pseudo-wedge failure

        Babanouri, Nima,Sarfarazi, Vahab Techno-Press 2018 Geomechanics & engineering Vol.15 No.1

        The "pseudo-wedge" failure is a name for a complex instability occurring at the Sarcheshmeh open-pit mine (Iran). The pseudo-wedge failure contains both the rock bridge failure and sliding along pre-existing discontinuities. In this paper, a cross section of the failure area was first modeled using a bonded-particle method. The results indicated development of tensile cracks at the slope toe which explains the freedom of pseudo-wedge blocks to slide. Then, a three-dimensional discrete element method was used to perform a block analysis of the instability. The technique of shear strength reduction was used to calculate the factor of safety. Finally, the influence of geometrical characteristics of the mine wall on the pseudo-wedge failure was investigated. The safety factor significantly increases as the dip and dip direction of the wall decrease, and reaches an acceptable value with a 10-degree decrease of them.

      • SCIESCOPUS

        The discrete element method simulation and experimental study of determining the mode I stress-intensity factor

        Shemirani, Alireza Bagher,Haeri, Hadi,Sarfarazi, Vahab,Akbarpour, Abbas,Babanouri, Nima Techno-Press 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.3

        The present study addresses the direct and indirect methods of determining the mode-I fracture toughness of concrete using experimental tests and particle flow code. The direct method used is compaction tensile test and the indirect methods are notched Brazilian disc test, semi-circular bend specimen test, and hollow center cracked disc. The experiments were carried out to determine which indirect method yields the fracture toughness closer to the one obtained by the direct method. In the numerical analysis, the PFC model was first calibrated with respect to the data obtained from the Brazilian laboratory test. The crack paths observed in the simulated tests were in reasonable accordance with experimental results. The discrete element simulations demonstrated that the macro fractures in the models are caused by microscopic tensile breakages on large numbers of bonded particles. The mode-I fracture toughness in the direct tensile test was smaller than the indirect testing results. The fracture toughness obtained from the SCB test was closer to the direct test results. Hence, the semi-circular bend test is recommended as a proper experiment for determination of mode-I fracture toughness of concrete in the absence of direct tests.

      • KCI등재

        The discrete element method simulation and experimental study of determining the mode I stress-intensity factor

        Alireza Bagher Shemirani,Hadi Haeri,Vahab Sarfarazi,Abbas Akbarpour,Nima Babanouri 국제구조공학회 2018 Structural Engineering and Mechanics, An Int'l Jou Vol.66 No.3

        The present study addresses the direct and indirect methods of determining the mode-I fracture toughness of concrete using experimental tests and particle flow code. The direct method used is compaction tensile test and the indirect methods are notched Brazilian disc test, semi-circular bend specimen test, and hollow center cracked disc. The experiments were carried out to determine which indirect method yields the fracture toughness closer to the one obtained by the direct method. In the numerical analysis, the PFC model was first calibrated with respect to the data obtained from the Brazilian laboratory test. The crack paths observed in the simulated tests were in reasonable accordance with experimental results. The discrete element simulations demonstrated that the macro fractures in the models are caused by microscopic tensile breakages on large numbers of bonded particles. The mode-I fracture toughness in the direct tensile test was smaller than the indirect testing results. The fracture toughness obtained from the SCB test was closer to the direct test results. Hence, the semi-circular bend test is recommended as a proper experiment for determination of mode-I fracture toughness of concrete in the absence of direct tests.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼