RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Statics corrections for shallow seismic refraction data

        Palmer Derecke,Nikrouz Ramin,Spyrou Andreur Korean Society of Earth and Exploration Geophysici 2005 지구물리와 물리탐사 Vol.8 No.1

        The determination of seismic velocities in refractors for near-surface seismic refraction investigations is an ill-posed problem. Small variations in the computed time parameters can result in quite large lateral variations in the derived velocities, which are often artefacts of the inversion algorithms. Such artefacts are usually not recognized or corrected with forward modelling. Therefore, if detailed refractor models are sought with model based inversion, then detailed starting models are required. The usual source of artefacts in seismic velocities is irregular refractors. Under most circumstances, the variable migration of the generalized reciprocal method (GRM) is able to accommodate irregular interfaces and generate detailed starting models of the refractor. However, where the very-near-surface environment of the Earth is also irregular, the efficacy of the GRM is reduced, and weathering corrections can be necessary. Standard methods for correcting for surface irregularities are usually not practical where the very-near-surface irregularities are of limited lateral extent. In such circumstances, the GRM smoothing statics method (SSM) is a simple and robust approach, which can facilitate more-accurate estimates of refractor velocities. The GRM SSM generates a smoothing 'statics' correction by subtracting an average of the time-depths computed with a range of XY values from the time-depths computed with a zero XY value (where the XY value is the separation between the receivers used to compute the time-depth). The time-depths to the deeper target refractors do not vary greatly with varying XY values, and therefore an average is much the same as the optimum value. However, the time-depths for the very-near-surface irregularities migrate laterally with increasing XY values and they are substantially reduced with the averaging process. As a result, the time-depth profile averaged over a range of XY values is effectively corrected for the near-surface irregularities. In addition, the time-depths computed with a Bero XY value are the sum of both the near-surface effects and the time-depths to the target refractor. Therefore, their subtraction generates an approximate 'statics' correction, which in turn, is subtracted from the traveltimes The GRM SSM is essentially a smoothing procedure, rather than a deterministic weathering correction approach, and it is most effective with near-surface irregularities of quite limited lateral extent. Model and case studies demonstrate that the GRM SSM substantially improves the reliability in determining detailed seismic velocities in irregular refractors.

      • KCI등재

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼