RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Effect of Salicylic Acid Formulations on Induced Plant Defense against Cassava Anthracnose Disease

        Rungthip Sangpueak,Piyaporn Phansak,Kanjana Thumanu,Supatcharee Siriwong,Sopone Wongkaew,Natthiya Buensanteai 한국식물병리학회 2021 Plant Pathology Journal Vol.37 No.4

        This study was to investigate defense mechanisms on cassava induced by salicylic acid formulation (SA) against anthracnose disease. Our results indicated that the SA could reduce anthracnose severity in cassava plants up to 33.3% under the greenhouse condition. The β-1,3-glucanase and chitinase enzyme activities were significantly increased at 24 hours after inocula- tion (HAI) and decrease at 48 HAI after Colletotrichum gloeosporioides challenge inoculation, respectively, for cassava treated with SA formulation. Synchrotron radi- ation–based Fourier-transform infrared microspectros- copy spectra revealed changes of the C=H stretching vibration (3,000-2,800 cm−1), pectin (1,740-1,700 cm−1), amide I protein (1,700-1,600 cm−1), amide II protein (1,600-1,500 cm−1), lignin (1,515 cm−1) as well as mainly C–O–C of polysaccharides (1,300-1,100 cm−1) in the leaf epidermal and mesophyll tissues treated with SA formulations, compared to those treated with fungicide carbendazim and distilled water after the challenged inoculation with C. gloeosporioides. The results indicate that biochemical changes in cassava leaf treated with SA played an important role in the enhancement of structural and chemical defense mechanisms leading to reduced anthracnose severity.

      • SCIEKCI등재SCOPUS

        Resistance Induction by Salicylic Acid Formulation in Cassava Plant against Fusarium solani

        Chanon Saengchan,Piyaporn Phansak,Kanjana Thumanu,Supatcharee Siriwong,Toan Le Thanh,Rungthip Sangpueak,Wannaporn Thepbandit,Narendra Kumar Papathoti,Natthiya Buensanteai 한국식물병리학회 2022 Plant Pathology Journal Vol.38 No.3

        Fusarium root rot caused by the soil-borne fungus Fusarium solani is one of the most important fungal diseases of cassava in Thailand, resulting in high yield losses of more than 80%. This study aimed to investigate if the exogenous application of salicylic acid formulations (Zacha) can induce resistance in cassava against Fusarium root rot and observe the biochemical changes in induced cassava leaf tissues through synchrotron radiation based on Fourier-transform infrared (SR-FTIR) microspectroscopy. We demonstrated that the application of Zacha11 prototype formulations could induce resistance against Fusarium root rot in cassava. The in vitro experimental results showed that Zacha11 prototype formulations inhibited the growth of F. solani at approximately 34.83%. Furthermore, a significant reduction in the disease severity of Fusarium root rot disease at 60 days after challenge inoculation was observed in cassava plants treated with Zacha11 at a concentration of 500 ppm (9.0%). Population densities of F. solani were determined at 7 days after inoculation. Treatment of the Zacha11 at a concentration of 500 ppm resulted in reduced populations compared with the distilled water control and differences among treatment means at each assay date. Moreover, the SRFTIR spectral changes of Zacha11-treated epidermal tissues of leaves had higher integral areas of lipids, lignins, and pectins (1,770-1,700/cm), amide I (1,700-1,600/ cm), amide II (1,600-1,500/cm), hemicellulose, lignin (1,300-1,200/cm), and cellulose (1,155/cm). Therefore, alteration in defensive carbohydrates, lipids, and proteins contributed to generate barriers against Fusarium invasion in cassava roots, leading to lower the root rot disease severity.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼