RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

        Nair, Meenu D.,Biswas, Jayanta,Vivek, G.,Barai, Mukti The Korean Institute of Power Electronics 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.5

        The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

      • SCIESCOPUSKCI등재

        Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

        Nair, Meenu D.,Biswas, Jayanta,Vivek, G.,Barai, Mukti The Korean Institute of Power Electronics 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.2

        This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.

      • KCI등재

        Optimum Hybrid SVPWM Technique for Three-level Inverter on the Basis of Minimum RMS Flux Ripple

        Meenu D. Nair,Jayanta Biswas,G. Vivek,Mukti Barai 전력전자학회 2019 JOURNAL OF POWER ELECTRONICS Vol.19 No.2

        This paper presents an optimum hybrid SVPWM technique for three-level voltage source inverters (VSIs). The proposed hybrid SVPWM technique aims to minimize total harmonic distortion (THD). A new parameter is introduced to incorporate the heterogeneous nature of switching sequences of SVPWM technique. The proposed hybrid SVPWM technique is implemented on a low-cost PIC microcontroller (PIC18F452) and verified experimentally with a 2 KVA three-phase three-level insulated gate bipolar transistor-based VSI. Optimum switching sequence results in the three-level inverter configuration are demonstrated. The proposed hybrid SVPWM technique improves the THD performance by 17.3% compared with the best available three-level SVPWM technique.

      • KCI등재

        Performance Evaluation of Various Bus Clamped Space Vector Pulse Width Modulation Techniques

        Meenu D. Nair,Jayanta Biswas,G. Vivek,Mukti Barai 전력전자학회 2017 JOURNAL OF POWER ELECTRONICS Vol.17 No.5

        The space vector pulse width modulation (SVPWM) technique is a popular PWM method for medium voltage drive applications. Conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are the most common SVPWM techniques. This paper evaluates the performance of various advanced BCSVPWM strategies in terms of their harmonic distortion and switching loss based on a uniform frame work. A uniform frame work, pulse number captures the performance parameter variations of different SVPWM strategies for various number of samples with heterogeneous pulse numbers. This work compares different advanced BCSVPWM techniques based on the modulation index and location of the clamping position (zero vector changing angle ) of a phase in a line cycle. The frame work provides a fixed fundamental frequency of 50Hz. The different BCSVPWM switching strategies are implemented and compared experimentally on a 415V, 2.2kW, 50Hz, 3-phase induction motor drive which is fed from an IGBT based 2 KVA voltage source inverter (VSI) with a DC bus voltage of 400 V. A low cost PIC microcontroller (PIC18F452) is used as the controller platform.

      • KCI등재

        Comparative Study on SVPWM Switching Sequences for VSIs

        G. Vivek,Jayanta Biswas,Meenu D. Nair,Mukti Barai 대한전기학회 2018 Journal of Electrical Engineering & Technology Vol.13 No.1

        Paper presents a comparative study of space vector pulse width modulation (SVPWM) switching sequences for Voltage Source Inverters (VSIs). Various SVPWM switching sequences are studied for two and three level VSIs in linear modulation index region. The computations of dwell times are presented for two and three level VSIs based on space vector geometry in a synchronized and optimized manner. The existing SVPWM switching sequences are implemented using Matlab / Simulink and in an experimental setup for three phase two and three level VSIs. The simulation and experimental waveforms of conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are demonstrated for two and three level inverter respectively. The performance of different SVPWM switching sequences are evaluated and presented based on weighted voltage total harmonic distortion (THD).

      • KCI등재

        Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

        G. Vivek,Jayanta Biswas,Meenu D. Nair,Mukti Barai 전력전자학회 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

      • SCIESCOPUSKCI등재

        Comparative Study on SVPWM Switching Sequences for VSIs

        Vivek, G.,Biswas, Jayanta,Nair, Meenu D.,Barai, Mukti The Korean Institute of Electrical Engineers 2018 Journal of Electrical Engineering & Technology Vol.13 No.1

        Paper presents a comparative study of space vector pulse width modulation (SVPWM) switching sequences for Voltage Source Inverters (VSIs). Various SVPWM switching sequences are studied for two and three level VSIs in linear modulation index region. The computations of dwell times are presented for two and three level VSIs based on space vector geometry in a synchronized and optimized manner. The existing SVPWM switching sequences are implemented using Matlab / Simulink and in an experimental setup for three phase two and three level VSIs. The simulation and experimental waveforms of conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are demonstrated for two and three level inverter respectively. The performance of different SVPWM switching sequences are evaluated and presented based on weighted voltage total harmonic distortion (THD).

      • SCIESCOPUSKCI등재

        Comparative Study of Minimum Ripple Switching Loss PWM Hybrid Sequences for Two-level VSI Drives

        Vivek, G.,Biswas, Jayanta,Nair, Meenu D.,Barai, Mukti The Korean Institute of Power Electronics 2018 JOURNAL OF POWER ELECTRONICS Vol.18 No.6

        Voltage source inverters (VSIs) are widely used to drive induction motors in industry applications. The quality of output waveforms depends on the switching sequences used in pulse width modulation (PWM). In this work, all existing optimal space vector pulse width modulation (SVPWM) switching strategies are studied. The performance of existing SVPWM switching strategies is optimized to realize a tradeoff between quality of output waveforms and switching losses. This study generalizes the existing optimal switching sequences for total harmonic distortions (THDs) and switching losses for different modulation indexes and reference angles with a parameter called quality factor. This factor provides a common platform in which the THDs and switching losses of different SVPWM techniques can be compared. The optimal spatial distribution of each sequence is derived on the basis of the quality factor to minimize harmonic current distortions and switching losses in a sector; the result is the minimum ripple loss SVPWM (MRSLPWM). By employing the sequences from optimized switching maps, the proposed method can simultaneously reduce THDs and switching losses. Two hybrid SVPWM techniques are proposed to reduce line current distortions and switching losses in motor drives. The proposed hybrid SVPWM strategies are MRSLPWM 30 and MRSLPWM 90. With a low-cost PIC microcontroller (PIC18F452), the proposed hybrid SVPWM techniques and the quality of output waveforms are experimentally validated on a 2 kVA VSI based on a three-phase two-level insulated gate bipolar transistor.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼