RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Distributed Fronthaul-Constrained Joint Transmission Design and Selection Using Augmented Consensus-based Dual Decomposition

        Mykola Servetnyk,Carrson C. Fung 한국통신학회 2022 Journal of communications and networks Vol.24 No.4

        User-centric coordinated multipoint (CoMP) joint transmission (JT) is a novel technique to manage interference and enhance system performance with single frequency reuse, where user equipment (UE) communicates with their closest transmission points (TPs). Unfortunately, in coherent JT, requirement of strict network synchronization accuracy makes it difficult and expensive to be practically deployed. The noncoherent JT has therefore received growing attention since it requires less strict network synchronization accuracy compared to its coherent counterpart as it does not require the signal to be phase-aligned at the receiver. Moreover, cell-free massive MIMO, which is regarded as combining CoMP with massive MIMO systems, has recently been touted as a solution for avoiding intercell interference and provide uniform coverage over a large area. However, the operational costs of CoMP, such as the associated control signaling and communication overhead and the increase of network complexity, could prevent the practical implementation of CoMP. A distributed joint transmission CoMP (JT-CoMP) scheme is proposed herein that allows distributed design and selection of cooperating transmission nodes. To maximize user capacity, the proposed distributed consensus optimization problem assumes spectrum underlay transmission is used so that the solution can achieve non-orthogonal multiple access (NOMA) for cell-free user centric JT-CoMP systems. The proposed algorithm is different from others in the literature because it solves a design problem that involves a coupling constraint that no existing algorithm can solve. Analytical results based on spectral graph theory are given to prove its convergence and characterize its rate of convergence. The more practical scenario is further considered, where limited fronthaul capacity is also included in the problem. A successive convex approximation (SCA) method is used to solve the resulting nonconvex problem, which is shown to maximize spectral efficiency. Simulation results are provided to show that the performance of both proposed distributed algorithms (that address problem without and with fronthaul constraint) is comparable to its centralized counterpart.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼