RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • Development of an Acceleration Plethysmogram based Cardioid Graph Biometric Identification

        Khairul Azami Sidek,Munieroh Osman,Siti Nurfarah Ain Mohd Azam,Nur Izzati Zainal 보안공학연구지원센터 2016 International Journal of Bio-Science and Bio-Techn Vol.8 No.3

        The increasing identity theft cases are alarming which puts biometric as the alternative solution to combat identity crime. Recently, biosignals are proposed as biometric modalities. Thus, in this study, the development of an Acceleration Plethysmogram (APG) based Cardioid graph biometric identification is presented. A total of 10 Photoplethysmogram (PPG) data from MIMIC II Waveform Database (MIMIC2WDB) with sampling frequency of 125 Hz were obtained. The datasets are later converted to APG signal by the second order differentiation and preprocessed with Butterworth filter. Then, Cardioid based graph of APG signal was generated. Its centroid and Euclidean distance are calculated. Finally, classification is done by applying these extracted features to Multilayer Perceptron (MLP) and Naïve Bayes neural networks classifiers. Our experimentation results show that subject recognition is possible by obtaining classification accuracy of 95% for APG based Cardioid graph for both classifiers while only 85% and 70% for PPG signal in MLP and Naïve Bayes classifiers. These outcomes indicate that APG based Cardioid graph biometric identification is a feasible solution to overcome identity fraud.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼