RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Photocatalytic degradation of methyl tert-butyl ether (MTBE) by Fe-TiO2 nanoparticles

        Mojtaba Safari,Manouchehr Nikazar,Mitra Dadvar 한국공업화학회 2013 Journal of Industrial and Engineering Chemistry Vol.19 No.5

        Nowadays, since the underground waters are known as the main source for supplying the drinking water, their pollution to the organic contaminants such as methyl tert-butyl ether (MTBE) is a very significant issue. Therefore, in this study, photocatalytic degradation of MTBE was investigated in the aqueous soloution of Fe-TiO2 nanoparticale under UV irradiation (wavelenght 254 nm) in a batch reactor. The Fe-TiO2 mixed oxides were prepared by sol–gel impregnation method. The samples were characterized by X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM) and BET specfic surface area. Then, the effect of various operational parameters namely pH, catalyst loading, molar ratio of [H2O2]0/[MTBE]0 and UV light intensity on degradation of aqueous MTBE were evaluated in a batch reactor. The optimal condition to achieve the best degradation for the initial concentration of 75 ppm MTBE was found at pH 7, catalyst concentration 2 g/L, molar ratio of [H2O2]0/[MTBE]0 4, and UV irradiation 24 W. Total degradation of MTBE with initial concentration of 75 ppm was reached in optimal condition after 70 min. In addition, investigations were also carried out to determine the appropriate kinetics of MTBE degradation using UV/Fe-TiO2/H2O2process in optimal condition.

      • Dynamic analysis of sandwich plate with viscoelastic core based on an improved method for identification of material parameters in GHM viscoelastic model

        Mojtaba Safari,Hasan Biglari,Mohsen Motezaker 국제구조공학회 2023 Steel and Composite Structures, An International J Vol.47 No.6

        In this paper, the dynamic response of a simply-supported composite sandwich plate with a viscoelastic core based on the Golla-Hughes-McTavish (GHM) viscoelastic model is investigated analytically. The formulation is developed using the three-layered sandwich panel theory. Hamilton's principle has been employed to derive the equations of motion. Since classical models, like kelvin-voigt and Maxwell models, cannot express a comprehensive description of the dynamic behavior of viscoelastic material, the GHM method is used to model the viscoelastic core of the plate in this research. The main advantage of the GHM model in comparison with classical models is the consideration of the frequency-dependent characteristic of viscoelastic material. Identification of the material parameters of GHM mini-oscillator terms is an essential procedure in applying the GHM model. In this study, the focus of viscoelastic modeling is on the development of GHM parameters identification. For this purpose, a new method is proposed to find these constants which express frequency-dependent behavior characterization of viscoelastic material. Natural frequencies and loss factors of the sandwich panel based on ESL and threelayered theories in different geometrics are described at 30°C and 90°C; also, the comparisons show that obtained natural frequencies are grossly overestimated by ESL theory. The argumentations of differences in natural frequencies are also illustrated in detail. The obtained results show that the GHM model presents a more accurate description of the plate's dynamic response by considering the frequency dependency behavior of the viscoelastic core.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼