RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        A study of transposable element-associated structural variations (TASVs) using a de novo-assembled Korean genome

        Mun Seyoung,Kim Songmi,Lee Wooseok,Kang Keunsoo,Meyer Thomas J.,Han Bok-Ghee,Han Kyudong,김희수 생화학분자생물학회 2021 Experimental and molecular medicine Vol.53 No.-

        Advances in next-generation sequencing (NGS) technology have made personal genome sequencing possible, and indeed, many individual human genomes have now been sequenced. Comparisons of these individual genomes have revealed substantial genomic differences between human populations as well as between individuals from closely related ethnic groups. Transposable elements (TEs) are known to be one of the major sources of these variations and act through various mechanisms, including de novo insertion, insertion-mediated deletion, and TE–TE recombination-mediated deletion. In this study, we carried out de novo whole-genome sequencing of one Korean individual (KPGP9) via multiple insert-size libraries. The de novo whole-genome assembly resulted in 31,305 scaffolds with a scaffold N50 size of 13.23 Mb. Furthermore, through computational data analysis and experimental verification, we revealed that 182 TE-associated structural variation (TASV) insertions and 89 TASV deletions contributed 64,232 bp in sequence gain and 82,772 bp in sequence loss, respectively, in the KPGP9 genome relative to the hg19 reference genome. We also verified structural differences associated with TASVs by comparative analysis with TASVs in recent genomes (AK1 and TCGA genomes) and reported their details. Here, we constructed a new Korean de novo whole-genome assembly and provide the first study, to our knowledge, focused on the identification of TASVs in an individual Korean genome. Our findings again highlight the role of TEs as a major driver of structural variations in human individual genomes.

      • Stabilization of Ruthenium(II) Polypyridyl Chromophores on Nanoparticle Metal-Oxide Electrodes in Water by Hydrophobic PMMA Overlayers

        Wee, Kyung-Ryang,Brennaman, M. Kyle,Alibabaei, Leila,Farnum, Byron H.,Sherman, Benjamin,Lapides, Alexander M.,Meyer, Thomas J. American Chemical Society 2014 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY - Vol.136 No.39

        <P>We describe a poly(methyl methacrylate) (PMMA) dip-coating procedure, which results in surface stabilization of phosphonate and carboxylate derivatives of Ru(II)-polypyridyl complexes surface-bound to mesoporous nanoparticle TiO<SUB>2</SUB> and nanoITO films in aqueous solutions. As shown by contact angle and transmission electron microscopy (TEM) measurements, PMMA oligomers conformally coat the metal-oxide nanoparticles changing the mesoporous films from hydrophilic to hydrophobic. The thickness of the PMMA overlayer on TiO<SUB>2</SUB>–Ru(II) can be controlled by changing the wt % of PMMA in the dipcoating solution. There are insignificant perturbations in electrochemical or spectral properties at thicknesses of up to 2.1 nm with the Ru(III/II) couple remaining electrochemically reversible and <I>E</I><SUB>1/2</SUB> values and current densities nearly unaffected. Surface binding by PMMA overlayers results in stable surface binding even at pH 12 with up to a ∼100-fold enhancement in photostability. As shown by transient absorption measurements, the MLCT excited state(s) of phosphonate derivatized [Ru(bpy)<SUB>2</SUB>((4,4′-(OH)<SUB>2</SUB>PO)<SUB>2</SUB>bpy)]<SUP>2+</SUP> undergo efficient injection and back electron transfer with pH independent kinetics characteristic of the local pH in the initial loading solution.</P><P><B>Graphic Abstract</B> <IMG SRC='http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/2014/jacsat.2014.136.issue-39/ja506987a/production/images/medium/ja-2014-06987a_0006.gif'></P><P><A href='http://pubs.acs.org/doi/suppl/10.1021/ja506987a'>ACS Electronic Supporting Info</A></P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼