RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Application of modified Tao-Mason equation of state to refrigerant mixtures

        Masoumeh Kiani,Mohammad Mehdi Papari,Zahra Nowruzian,Jalil Moghadasi 한국화학공학회 2015 Korean Journal of Chemical Engineering Vol.32 No.7

        In our previous work, we modified the Tao-Mason EOS [1] to predict the volumetric properties of pure refrigerants [2]. In the present study, we have successfully extended the modified Tao-Mason EOS to refrigerant mixtures. The second virial coefficient, B2(T), and the temperature-dependent correction factor α(T) and van der Waals co-volume b(T) were calculated from a two-parameter corresponding-states correlation along with the enthalpy of vaporization and the molar density, both at the normal boiling point. Then the cross parameters B12(T), α12(T), and b12(T), were determined with the help of simple combining rules. The constructed Tao-Mason EOS was employed to predict the densities and vapor pressures of several HFC, hydrocarbons and HFO mixtures. The calculated results were compared with literature data. The overall agreement between our results and literature values is remarkable.

      • KCI등재

        Performance assessment of Tao–Mason equation of state: Results for vapor–liquid equilibrium properties

        Mohammad Mehdi Papari,Masoumeh Kiani,Jalil Moghadasi 한국공업화학회 2011 Journal of Industrial and Engineering Chemistry Vol.17 No.4

        The present work evaluates the performance of a molecular-based equation of state in predicting thermodynamic properties of several fluids in a very wide range of temperatures encompassing 100 K < T < 1100 K and pressures ranging from zero to 3200 bar. The theoretical equation of state (EOS)is that of Tao–Mason (TM) which is based on statistical mechanical perturbation theory. The 21 fluids including: argon (Ar), krypton (Kr), xenon (Xe), nitrogen (N_2), oxygen (O_2), carbon dioxide (CO_2),methane (CH_4), ethane (C_2H_6), propane (C_3H_8), normal butane (n-C_4H_(10)), isobutene (i-C_4H_(10)), ethene (C_2H_4), benzene (C_6H_6), toluene (C_7H_8) as well as refrigerants consisting of 1,1,1,2 tetra fluoroethane (R134a), tetrafluoromethane (R14), chlorodifluromethane (R22), 1,1,1-trifluoroethane (R143a), 1,1,1-trifluoro,2,2-dichloroethane (R123), octafluoropropane (R218), and 1,1-difluoroethane (R152a) are selected and compared with literature data. The calculations cover the ranges from the dilute vapor or gas to the highly compressed liquid and supercritical regions. The thermodynamic properties are the vapor and liquid densities, the vapor pressure, the internal energy, the enthalpy, the entropy, the heat capacity at constant pressure and constant volume, and the speed of sound. It was found that the overall agreement with literature in all phases especially the vapor/gas phase is remarkable. Furthermore, the Zeno line regularity can be well represented by the TM EOS. Finally, the TM EOS is further assessed through comparing with the Ihm–Song–Mason (ISM) equation of state. In general, the TM EOS outperforms the ISM equation of state.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼