RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Computer based estimation of backbone curves for hysteretic Response of reinforced concrete columns under static cyclic lateral loads

        M. Rizwan,M.T.A. Chaudhary,M. Ilyas,Raja Rizwan Hussain,T.R. Stacey 사단법인 한국계산역학회 2014 Computers and Concrete, An International Journal Vol.14 No.2

        Cyclic test of the columns is of practical relevance to the performance of compression members during an earthquake loading. The strength, ductility and energy absorption capabilities of reinforced concrete (RC) columns subjected to cyclic loading have been estimated by many researchers. These characteristics are not normally inherent in plain concrete but can be achieved by effectively confining columns through transverse reinforcement. An extensive experimental program, in which performance of four RC columns detailed according to provisions of ACI-318-08 was studied in contrast with that of four columns confined by a new proposed technique. This paper presents performance of columns reinforced by standard detailing and cast with 25 and 32 MPa concrete. The experimentally achieved load-displacement hysteresis and backbone curves of two columns are presented. The two approaches which work in conjunction with Response 2000 have been suggested to draw analytical back bone curves of RC columns. The experimental and analytical backbone curves are found in good agreement. This investigation gives a detail insight of the response of RC columns subjected to cyclic loads during their service life. The suggested analytical procedures will be available to the engineers involved in design to appraise the capacity of RC columns.

      • SCIESCOPUS

        Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review

        Rizwan, M.,Ali, S.,Qayyum, M. F.,Ok, Y. S.,Zia-ur-Rehman, M.,Abbas, Z.,Hannan, F. Springer Science + Business Media 2017 Environmental geochemistry and health Vol.39 No.2

        <P>Maize (Zea mays L.) has been widely adopted for phytomanagement of cadmium (Cd)-contaminated soils due to its high biomass production and Cd accumulation capacity. This paper reviewed the toxic effects of Cd and its management by maize plants. Maize could tolerate a certain level of Cd in soil while higher Cd stress can decrease seed germination, mineral nutrition, photosynthesis and growth/yields. Toxicity response of maize to Cd varies with cultivar/varieties, growth medium and stress duration/extent. Exogenous application of organic and inorganic amendments has been used for enhancing Cd tolerance of maize. The selection of Cd-tolerant maize cultivar, crop rotation, soil type, and exogenous application of microbes is a representative agronomic practice to enhance Cd tolerance in maize. Proper selection of cultivar and agronomic practices combined with amendments might be successful for the remediation of Cd-contaminated soils with maize. However, there might be the risk of food chain contamination by maize grains obtained from the Cd-contaminated soils. Thus, maize cultivation could be an option for the management of low- and medium-grade Cd-contaminated soils if grain yield is required. On the other hand, maize can be grown on Cd-polluted soils only if biomass is required for energy production purposes. Long-term field trials are required, including risks and benefit analysis for various management strategies aiming Cd phytomanagement with maize.</P>

      • Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges

        Rizwan, M.,Lee, J.H.,Gani, R. Applied Science Publishers 2015 APPLIED ENERGY Vol.150 No.-

        Microalgae have great potential as a feedstock for the production of a wide range of end-products under the broad concept of biorefinery. In an earlier work, we proposed a superstructure based optimization model to find the optimal processing pathway for the production of biodiesel from microalgal biomass, and identified several challenges with the focus being on utilizing lipids extracted microalgal biomass for economic and environmentally friendly production of useful energy products. In this paper, we expand the previous optimization framework by considering the processing of microalgae residue previously treated as wastes. We develop an expanded biorefinery superstructure model, based on which a mixed integer nonlinear programming (MINLP) model is proposed to determine the optimal/promising biorefinery configurations with different choices of objective functions. The MINLP model is solved in GAMS using a database built in Excel. Economic sensitivity analysis is performed to elaborate the potential improvements in the overall economics, and set the targets that must be achieved in the future in order for microalgal biofuels to become economically viable.

      • KCI등재

        MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

        M. Rizwan Khan,Atif Iqbal 대한전기학회 2008 Journal of Electrical Engineering & Technology Vol.3 No.2

        Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter (VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five¬phase drive system with current control in the stationary reference frame. Results, obtained with fixed¬voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

      • SCISCIESCOPUS

        Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review

        Rizwan, M.,Ali, S.,Adrees, M.,Rizvi, H.,Zia-ur-Rehman, M.,Hannan, F.,Qayyum, M. F.,Hafeez, F.,Ok, Y. S. Springer Science + Business Media 2016 Environmental Science and Pollution Research Vol.23 No.18

        <P>Cadmium (Cd) is one of the main pollutants in paddy fields, and its accumulation in rice (Oryza sativa L.) and subsequent transfer to food chain is a global environmental issue. This paper reviews the toxic effects, tolerance mechanisms, and management of Cd in a rice paddy. Cadmium toxicity decreases seed germination, growth, mineral nutrients, photosynthesis, and grain yield. It also causes oxidative stress and genotoxicity in rice. Plant response to Cd toxicity varies with cultivars, growth condition, and duration of Cd exposure. Under Cd stress, stimulation of antioxidant defense system, osmoregulation, ion homeostasis, and over production of signaling molecules are important tolerance mechanisms in rice. Several strategies have been proposed for the management of Cd-contaminated paddy soils. One such approach is the exogenous application of hormones, osmolytes, and signaling molecules. Moreover, Cd uptake and toxicity in rice can be decreased by proper application of essential nutrients such as nitrogen, zinc, iron, and selenium in Cd-contaminated soils. In addition, several inorganic (liming and silicon) and organic (compost and biochar) amendments have been applied in the soils to reduce Cd stress in rice. Selection of low Cd-accumulating rice cultivars, crop rotation, water management, and exogenous application of microbes could be a reasonable approach to alleviate Cd toxicity in rice. To draw a sound conclusion, long-term field trials are still required, including risks and benefit analysis for various management strategies.</P>

      • SCIESCOPUSKCI등재

        MRAS Based Sensorless Control of a Series-Connected Five-Phase Two-Motor Drive System

        Khan, M. Rizwan,Iqbal, Atif The Korean Institute of Electrical Engineers 2008 Journal of Electrical Engineering & Technology Vol.3 No.2

        Multi-phase machines can be used in variable speed drives. Their applications include electric ship propulsion, 'more-electric aircraft' and traction applications, electric vehicles, and hybrid electric vehicles. Multi-phase machines enable independent control of a few numbers of machines that are connected in series in a particular manner with their supply being fed from a single voltage source inverter(VSI). The idea was first implemented for a five-phase series-connected two-motor drive system, but is now applicable to any number of phases more than or equal to five-phase. The number of series-connected machines is a function of the phase number of VSI. Theoretical and simulation studies have already been reported for number of multi-phase multi-motor drive configurations of series-connection type. Variable speed induction motor drives without mechanical speed sensors at the motor shaft have the attractions of low cost and high reliability. To replace the sensor, information concerning the rotor speed is extracted from measured stator currents and voltages at motor terminals. Open-loop estimators or closed-loop observers are used for this purpose. They differ with respect to accuracy, robustness, and sensitivity against model parameter variations. This paper analyses operation of an MRAS estimator based sensorless control of a vector controlled series-connected two-motor five-phase drive system with current control in the stationary reference frame. Results, obtained with fixed-voltage, fixed-frequency supply, and hysteresis current control are presented for various operating conditions on the basis of simulation results. The purpose of this paper is to report the first ever simulation results on a sensorless control of a five-phase two-motor series-connected drive system. The operating principle is given followed by a description of the sensorless technique.

      • Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination

        Abbas, T.,Rizwan, M.,Ali, S.,Zia-ur-Rehman, M.,Farooq Qayyum, M.,Abbas, F.,Hannan, F.,Rinklebe, J.,Sik Ok, Y. Academic Press 2017 Ecotoxicology and environmental safety Vol.140 No.-

        <P>Cadmium (Cd) is a well-known and widespread toxic heavy metal while the effects of biochar (BC) on Cd bioavailability and toxicity in wheat, especially in soils with aged contamination are largely unknown. In the present study, the effect of rice straw BC on Cd immobilization in soil and uptake by wheat in an agricultural contaminated-soil was investigated. Different levels of rice straw BC (0%, 1.5%, 3.0% and 5% w/w) were incorporated into the soil and incubated for two weeks. After this, wheat plants were grown in the amended soil until maturity. The results show that the BC treatments increased the soil and soil solution pH and silicon contents in the plant tissues and in the soil solution while decreased the bioavailable Cd in soil. The BC application increased the plant-height, spike-length, shoot and root dry mass and grain yield in a dose additive manner when compared with control treatment. As compared to control, BC application increased the photosynthetic pigments and gas exchange parameters in leaves. Biochar treatments decreased the oxidative stress while increased the activities of antioxidant enzymes in shoots compared to the control. The BC treatments decreased the Cd and Ni while increased Zn and Mn concentrations in shoots, roots, and grains of wheat compared to the control. As compared to the control, Cd concentration in wheat grains decreased by 26%, 42%, and 57% after the application of 1.5%, 3.0%, and 5.0% BC respectively. Overall, the application of rice straw BC might be effective in immobilization of metal in the soil and reducing its uptake and translocation to grains.</P>

      • SCISCIESCOPUS

        Biochar soil amendment on alleviation of drought and salt stress in plants: a critical review

        Ali, S.,Rizwan, M.,Qayyum, M. F.,Ok, Y. S.,Ibrahim, M.,Riaz, M.,Arif, M. S.,Hafeez, F.,Al-Wabel, M. I.,Shahzad, A. N. Springer Science + Business Media 2017 Environmental Science and Pollution Research Vol.24 No.14

        <P>Drought and salt stress negatively affect soil fertility and plant growth. Application of biochar, carbon-rich material developed from combustion of biomass under no or limited oxygen supply, ameliorates the negative effects of drought and salt stress on plants. The biochar application increased the plant growth, biomass, and yield under either drought and/or salt stress and also increased photosynthesis, nutrient uptake, and modified gas exchange characteristics in drought and salt-stressed plants. Under drought stress, biochar increased the water holding capacity of soil and improved the physical and biological properties of soils. Under salt stress, biochar decreased Na+ uptake, while increased K+ uptake by plants. Biochar-mediated increase in salt tolerance of plants is primarily associated with improvement in soil properties, thus increasing plant water status, reduction of Na+ uptake, increasing uptake of minerals, and regulation of stomatal conductance and phytohormones. This review highlights both the potential of biochar in alleviating drought and salt stress in plants and future prospect of the role of biochar under drought and salt stress in plants.</P>

      • SCISCIESCOPUS

        Cadmium phytoremediation potential of <i>Brassica</i> crop species: A review

        Rizwan, Muhammad,Ali, Shafaqat,Zia ur Rehman, Muhammad,Rinklebe, Jö,rg,Tsang, Daniel C.W.,Bashir, Arooj,Maqbool, Arosha,Tack, F.M.G.,Ok, Yong Sik Elsevier 2018 Science of the Total Environment Vol.631 No.-

        <P><B>Abstract</B></P> <P>Cadmium (Cd) is a highly toxic metal released into the environment through anthropogenic activities. Phytoremediation is a green technology used for the stabilization or remediation of Cd-contaminated soils. <I>Brassica</I> crop species can produce high biomass under a range of climatic and growing conditions, allowing for considerable uptake and accumulation of Cd, depending on species. These crop species can tolerate Cd stress via different mechanisms, including the stimulation of the antioxidant defense system, chelation, compartmentation of Cd into metabolically inactive parts, and accumulation of total amino-acids and osmoprotectants. A higher Cd-stress level, however, overcomes the defense system and may cause oxidative stress in <I>Brassica</I> species due to overproduction of reactive oxygen species and lipid peroxidation. Therefore, numerous approaches have been followed to decrease Cd toxicity in <I>Brassica</I> species, including selection of Cd-tolerant cultivars, the use of inorganic and organic amendments, exogenous application of soil organisms, and employment of plant-growth regulators. Furthermore, the coupling of genetic engineering with cropping may also help to alleviate Cd toxicity in <I>Brassica</I> species. However, several field studies demonstrated contrasting results. This review suggests that the combination of Cd-tolerant <I>Brassica</I> cultivars and the application of soil amendments, along with proper agricultural practices, may be the most efficient means of the soil Cd phytoattenuation. Breeding and selection of Cd-tolerant species, as well as species with higher biomass production, might be needed in the future when aiming to use <I>Brassica</I> species for phytoremediation.</P> <P><B>Highlights</B></P> <P> <UL> <LI> <I>Brassica</I> species can be considered a potential candidate for Cd phytoremediation. </LI> <LI> <I>Brassica</I> species can accumulate most of the soil Cd in its parts. </LI> <LI> Different amendments can be applied to enhance Cd tolerance in <I>Brassica</I> species. </LI> <LI> Integrated agricultural practices can be used to enhance Cd uptake in <I>Brassica</I> species. </LI> </UL> </P> <P><B>Graphical abstract</B></P> <P>[DISPLAY OMISSION]</P>

      • KCI등재

        Effect of Annealing on the Conversion of ZnS to ZnO Nanoparticles Synthesized by the Sol-gel Method Using Zinc Acetate and Thiourea

        Rizwan Wahab,S. G. Ansari,김영순,M. S. Dhage,서형기,송민우,신형식 대한금속·재료학회 2009 METALS AND MATERIALS International Vol.15 No.3

        A systematic study is presented on the conversion of zinc sulfide to zinc oxide nanoparticles as a function of annealing temperature. Zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and thiourea (NH2CSNH2) are used as precursors to synthesize ZnS and then ZnO. The aqueous solution of the precursor was refluxed at 90 °C for over 12 h. The synthesized complex was then annealed at 300 °C, 500 °C, 700 °C, and 900 °C in air for one hour. From elemental analyses, it was found that the as-synthesized powder is a mixture of ZnS and ZnO, which annealing later converts to the zinc oxide phase only. The morphological observations revealed spherical particles of various sizes (20 nm to 300 nm) while increasing the annealing temperatures. A drastic change in the vibration bands is noticed with annealing. Photoelectron peaks related to sulfur and carbon are observed for synthesized powder, whereas, these peaks disappeared when annealed at 500 °C. A systematic study is presented on the conversion of zinc sulfide to zinc oxide nanoparticles as a function of annealing temperature. Zinc acetate dihydrate (Zn(CH3COO)2.2H2O) and thiourea (NH2CSNH2) are used as precursors to synthesize ZnS and then ZnO. The aqueous solution of the precursor was refluxed at 90 °C for over 12 h. The synthesized complex was then annealed at 300 °C, 500 °C, 700 °C, and 900 °C in air for one hour. From elemental analyses, it was found that the as-synthesized powder is a mixture of ZnS and ZnO, which annealing later converts to the zinc oxide phase only. The morphological observations revealed spherical particles of various sizes (20 nm to 300 nm) while increasing the annealing temperatures. A drastic change in the vibration bands is noticed with annealing. Photoelectron peaks related to sulfur and carbon are observed for synthesized powder, whereas, these peaks disappeared when annealed at 500 °C.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼