RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Analysis and design of voltage doubling rectifier circuit for power supply of neutron source device towards BNCT

        Wang Rixin,Liang Lizhen,Gong Congguo,Wang Longyang,Tao Jun 한국원자력학회 2024 Nuclear Engineering and Technology Vol.56 No.6

        With the rapid development of DC high voltage accelerator, higher requirements have been raised for the design of DC high voltage power supply, requiring more stable high voltage with lower output ripple. Therefore, it also puts forward higher requirements for the parameter design of the voltage doubling rectifier circuit, which is the core component of the DC high voltage power supply. In order to obtain output voltage with better performance, the effects of the working frequency, the stage capacitance and the load resistance on the output voltage of the voltage doubling rectifier circuit are studied in detail by simulation. It can be concluded that the higher the working frequency of the transformer, the larger the stage capacitance, the larger the load resistance and the better the output voltage performance in a certain range. Based on this, a 2.5 MV voltage doubling rectifier circuit driven by a 120 kHz frequency transformer is designed, developed and tested for the power supply of the neutron source device towards BNCT. Experimental results show that this voltage doubling rectifier circuit can satisfy the design requirements, laying a certain foundation for the engineering design of DC high voltage power supply of neutron source device.

      • KCI등재

        Identification and Validation of Circulating MicroRNA Signatures for Breast Cancer Early Detection Based on Large Scale Tissue-Derived Data

        Xiaokang Yu,Jinsheng Liang,Jiarui Xu,Xingsong Li,Shan Xing,Huilan Liu,Wan-Li Liu,Dongdong Liu,Jianhua Xu,Lizhen Huang,Hongli Du 한국유방암학회 2018 Journal of breast cancer Vol.21 No.4

        Purpose: Breast cancer is the most commonly occurring cancer among women worldwide, and therefore, improved approaches for its early detection are urgently needed. As microRNAs (miRNAs) are increasingly recognized as critical regulators in tumorigenesis and possess excellent stability in plasma, this study focused on using miRNAs to develop a method for identifying noninvasive biomarkers. Methods: To discover critical candidates, differential expression analysis was performed on tissue-originated miRNA profiles of 409 early breast cancer patients and 87 healthy controls from The Cancer Genome Atlas database. We selected candidates from the differentially expressed miRNAs and then evaluated every possible molecular signature formed by the candidates. The best signature was validated in independent serum samples from 113 early breast cancer patients and 47 healthy controls using reverse transcription quantitative real-time polymerase chain reaction. Results: The miRNA candidates in our method were revealed to be associated with breast cancer according to previous studies and showed potential as useful biomarkers. When validated in independent serum samples, the area under curve of the final miRNA signature (miR-21-3p, miR-21-5p, and miR-99a-5p) was 0.895. Diagnostic sensitivity and specificity were 97.9% and 73.5%, respectively. Conclusion: The present study established a novel and effective method to identify biomarkers for early breast cancer. And the method, is also suitable for other cancer types. Furthermore, a combination of three miRNAs was identified as a prospective biomarker for breast cancer early detection.

      • SCIESCOPUSKCI등재

        Simulations for the cesium dynamics of the RF-driven prototype ion source for CRAFT N-NBI

        Yalong Yang,Yong Wu,Lizhen Liang,Jianglong Wei,Rui Zhang,Yahong Xie,Wei Liu,Chundong Hu Korean Nuclear Society 2024 Nuclear Engineering and Technology Vol.56 No.4

        To realize an initial objective of the negative ion-based neutral beam injection (N-NBI) at the Comprehensive Research Facility for Fusion Technology (CRAFT) test facility, which targets an H<sup>0</sup> beam power of 2 MW at an energy of 200-400 keV and a pulse duration of 100 s, it is crucial to study the cesium dynamics of the negative ion source. Here a numerical simulation program CSFC3D is developed and applied to simulate the distribution and time dynamics of cesium during short pulses. The calculations show that most of the cesium on the plasma grid (PG) area originates from the release of cesium that is accumulated within the ion source in the plasma phase. Increasing the wall temperature reduces the loss of cesium on the wall of the ion source. Furthermore, the thickness of the cesium monolayer is directly influenced by the PG temperature. Both simulated and experimental results demonstrate that maintaining the PG temperature between 180 ℃ and 200 ℃ is essential for enhancing the performance of the ion source and optimizing the cesium behavior.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼