RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
          펼치기
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
          펼치기
        • 발행연도
          펼치기
        • 작성언어
        • 저자
          펼치기

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUSKCI등재

        Effects of Addition Level and Chemical Type of Propionate Precursors in Dicarboxylic Acid Pathway on Fermentation Characteristics and Methane Production by Rumen Microbes In vitro

        Li, X.Z.,Yan, C.G.,Choi, S.H.,Long, R.J.,Jin, G.L.,Song, Man K. Asian Australasian Association of Animal Productio 2009 Animal Bioscience Vol.22 No.1

        Two in vitro experiments were conducted to examine the effects of propionate precursors in the dicarboxylic acid pathway on ruminal fermentatation characteristics, $CH_4$ production and degradation of feed by rumen microbes. Fumarate or malate as sodium salts (Exp. 1) or acid type (Exp. 2) were added to the culture solution (150 ml, 50% strained rumen fluid and 50% artificial saliva) to achieve final concentrations of 0, 8, 16 and 24 mM, and incubated anaerobically for 0, 1, 3, 6, 9 and 12 h at $39^{\circ}C$. For both experiments, two grams of feed consisting of 70% concentrate and 30% ground alfalfa (DM basis) were prepared in a nylon bag, and were placed in a bottle containing the culture solution. Addition of fumarate or malate in both sodium salt and acid form increased (p<0.0001) pH of culture solution at 3, 6, 9 and 12 h incubations. The pH (p<0.0001) and total volatile fatty acids (VFA, p<0.05) were enhanced by these precursors as sodium salt at 3, 6 and 9 h incubations, and pH (p<0.001) and total VFA (p<0.01) from fumarate or malate in acid form were enhanced at a late stage of fermentation (9 h and 12 h) as the addition level increased. pH was higher (p<0.001) for fumarate than for malate as sodium salt at 3 h and 6 h incubations. Propionate ($C_3$) proportion was increased (p<0.0001) but those of $C_2$ (p<0.05) and $C_4$ (p<0.01 - p<0.001) were reduced by the addition of sodium salt precursors from 3 h to 12 incubation times while both precursors in acid form enhanced (p<0.011 - p<0.0001) proportion of $C_3$ from 6h but reduced (p<0.018 - p<0.0005) $C_4$ proportion at incubation times of 1, 3, 9 and 12 h. Proportion of $C_3$ was increased (p<0.05 - p<0.0001) at all incubation times by both precursors as sodium salt while that of $C_3$ was increased (p<0.001) from 6h but $C_4$ proportion was decreased by both precursors in acid form as the addition level increased. Proportion of $C_3$ was higher (p<0.01 - p<0.001) for fumarate than malate as sodium salt from 6 h incubation but was higher for malate than fumarate in acid form at 9 h (p<0.05) and 12 h (p<0.01) incubation times. Increased levels (16 and 24 mM) of fumarate or malate as sodium salt (p<0.017) and both precursors in acid form (p<0.028) increased the total gas production, but no differences were found between precursors in both chemical types. Propionate precursors in both chemical types clearly reduced (p<0.0001 - p<0.0002) $CH_4$ production, and the reduction (p<0.001 - p<0.0001) was dose dependent as the addition level of precursors increased. The $CH_4$ generated was smaller (p<0.01 - p<0.0001) for fumarate than for malate in both chemical types. Addition of fumarate or malate as sodium type reduced (p<0.004) dry matter degradation while both precursors in both chemical types slightly increased neutral detergent fiber degradability of feed in the nylon bag.

      • SCISCIESCOPUS

        Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes

        Li, R.,Chowdhury, M.Y.E.,Kim, J.H.,Kim, T.H.,Pathinayake, P.,Koo, W.S.,Park, M.E.,Yoon, J.E.,Roh, J.B.,Hong, S.P.,Sung, M.H.,Lee, J.S.,Kim, C.J. Elsevier Scientific Pub. Co 2015 Veterinary microbiology Vol.179 No.3

        The development of a universal influenza vaccine that provides broad cross protection against existing and unforeseen influenza viruses is a critical challenge. In this study, we constructed and expressed conserved sM2 and HA2 influenza antigens with cholera toxin subunit A1 (CTA1) on the surface of Lactobacillus casei (pgsA-CTA1sM2HA2/L. casei). Oral and nasal administrations of recombinant L. casei into mice resulted in high levels of serum immunoglobulin G (IgG) and their isotypes (IgG1 & IgG2a) as well as mucosal IgA. The mucosal administration of pgsA-CTA1sM2HA2/L. casei may also significantly increase the levels of sM2- or HA2-specific cell-mediated immunity because increased release of both IFN-γ and IL-4 was observed. The recombinant pgsA-CTA1sM2HA2/L. casei provided better protection of BALB/c mice against 10 times the 50% mouse lethal doses (MLD<SUB>50</SUB>) of homologous A/EM/Korea/W149/06(H5N1) or A/Aquatic bird/Korea/W8½005 (H5N2) and heterologous A/Puerto Rico/8/34(H1N1), or A/Chicken/Korea/116/2004(H9N2) or A/Philippines/2/08(H3N2) viruses, compared with L. casei harboring sM2HA2 and also the protection was maintained up to seven months after administration. These results indicate that recombinant L. casei expressing the highly conserved sM2, HA2 of influenza and CTA1 as a mucosal adjuvant could be a potential mucosal vaccine candidate or tool to protect against divergent influenza viruses for human and animal.

      • KCI등재

        China Spallation Neutron Source: Accelerator Design Iterations and R&D Status

        J. Wei,C.-D. Deng,C.-H. Wang,C.-T. Shi,H. Sun,H.-F. Ouyang,H.-M. Qu,H.-Y. Dong,J. Li,J. Zhang,J.-S. Cao,J.-Y. Tang,L. Dong,L.-L. Wang,Q. Qin,Q.-B. Wang,S. Wang,S.-N. Fu,S.-X Fang,T. -G. Xu,W. Kang,Y.- 한국물리학회 2007 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.50 No.I

        The China Spallation Neutron Source (CSNS) is a high-power, accelerator-based project currently under preparation. The accelerator complex consists of an H$^-$ ion source, an H$^-$ linac, a rapid-cycling proton synchrotron, and the transport lines. During the past year, the design of most accelerator systems went through major iterations, and initial research and developments was started on the prototyping of several key components.

      • SCISCIESCOPUS

        PHF2 histone demethylase acts as a tumor suppressor in association with p53 in cancer

        Lee, K-H,Park, J-W,Sung, H-S,Choi, Y-J,Kim, W H,Lee, H S,Chung, H-J,Shin, H-W,Cho, C-H,Kim, T-Y,Li, S-H,Youn, H-D,Kim, S J,Chun, Y-S Macmillan Publishers Limited 2015 Oncogene Vol.34 No.22

        Plant homeodomain finger 2 (PHF2) has a role in epigenetic regulation of gene expression by demethylating H3K9-Me2. Several genome-wide studies have demonstrated that the chromosomal region including the PHF2 gene is often deleted in some cancers including colorectal cancer, and this finding encouraged us to investigate the tumor suppressive role of PHF2. As p53 is a critical tumor suppressor in colon cancer, we tested the possibility that PHF2 is an epigenetic regulator of p53. PHF2 was associated with p53, and thereby, promoted p53-driven gene expression in cancer cells under genotoxic stress. PHF2 converted the chromatin that is favorable for transcription by demethylating the repressive H3K9-Me2 mark. In an HCT116 xenograft model, PHF2 was found to be required for the anticancer effects of oxaliplatin and doxorubicin. In PHF2-deficient xenografts, p53 expression was profoundly induced by both drugs, but its downstream product p21 was not, suggesting that p53 cannot be activated in the absence of PHF2. To find clinical evidence about the role of PHF2, we analyzed the expressions of PHF2, p53 and p21 in human colon cancer tissues and adjacent normal tissues from patients. PHF2 was downregulated in cancer tissues and PHF2 correlated with p21 in cancers expressing functional p53. Colon and stomach cancer tissue arrays showed a positive correlation between PHF2 and p21 expressions. Informatics analyses using the Oncomine database also supported our notion that PHF2 is downregulated in colon and stomach cancers. On the basis of these findings, we propose that PHF2 acts as a tumor suppressor in association with p53 in cancer development and ensures p53-mediated cell death in response to chemotherapy.

      • SCIESCOPUSKCI등재

        Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria In vitro

        Wang, Z.B.,Xin, H.S.,Wang, M.J.,Li, Z.Y.,Qu, Y.L.,Miao, S.J.,Zhang, Y.G. Asian Australasian Association of Animal Productio 2013 Animal Bioscience Vol.26 No.5

        An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis) for in vitro fermentation consisted of alfalfa hay (31.7%), Chinese wild rye grass hay (28.3%), ground corn grain (24.5%), soybean meal (15.5%) with a forage: concentrate of 60:40. Treatments were the control (no additive) and hainanmycin supplemented at 0.1 (H0.1), 1 (H1), 10 (H10), and 100 mg/kg (H100) of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100) reduced (p<0.05) branched-chain VFA concentration, the molar proportion of acetate and butyrate, and ratio of acetate to propionate; and increased the molar proportion of propionate, except that for H1 the in molar proportion of acetate and isobutyrate was not changed (p>0.05). After 24 h of fermentation, H10 and H100 increased (p<0.05) concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05) $NH_3$-N concentration and deaminase activity compared with control. Peptidase activitives were not affected by hainanmycin. Hainanmycin supplementation only inhibited the growth of Butyrivibrio fibrisolvens, which is one of the species of low deaminative activity. Hainanmycin supplementation also decreased (p<0.05) relative population sizes of hyper-ammonia-producing species, except for H0.1 on Clostridium aminophilum. It was concluded that dietary supplementation with hainanmycin could improve ruminal fermentation and modify protein degradation by changing population size of ammonia-producing bacteria in vitro; and the addition level of 10 mg/kg appeared to achieve the best results.

      • KCI등재

        유형별 완전혼합사료 급여가 반추위내의 발효성상 및 영양소 소화율에 미치는 영향

        이덕윤,고종렬,최낙진,이상석,송재용,이세영,박성호,성하균,하종규 한국동물자원과학회 2003 한국축산학회지 Vol.45 No.5

        This study was conducted to examine effects of feeding dry TMR(DTMR), wet TMR(WTMR) and fermented TMR(FTMR) on rumen fermentation, enzyme activity and digestibility in the total tract of sheep. Three rumen cannulated sheep were used in a 3 × 3 latin square design. The present results showed that ?, NH_(3)-N, total and individual VFA, A/P ratio and enzymes (CMCase, Xylanase and Protease) activity in the rumen were higher in WTMR and FTMR compared with DTMR. In addition, dry matter, organic matter, crude protein, ether extract, NDF and ADF digestibility in the total tract were also higher in WTMR and FTMR compared with DTMR. Therefore, the present results showed that WTMR and FTMr are better than DTMR for rumen fermentation and nutrients digestibility.

      • SCIESCOPUSKCI등재

        Inter - Grain Exchange Interaction and Hysteresis Loops of Melt - Spun Nd₁₃Fe77B10

        J. H. Min,Y. B. Kim,W. S. Park,M. J. Park,Li Tian 한국자기학회 1996 Journal of Magnetics Vol.1 No.2

        Hysteresis loops of melt-spun Nd₁₃Fe_(77) B_(10) cooled down at remanent state were measured at 4.2 K and 250 K. The hysteresis loops were analysed on the basis of the Stoner-Wohlfarth (S-W) model, the inter-grain exchange coupled single domain (SD) model and micromagnetism. The coercivity higher than that predicted from the S-W model and the striking shift of the thin minor loop along the H-axis observed at the fields of Hmax = 4 MA/m at 4.2 K indicated new evidences for the inter-grain exchange interaction. The S-W model failed in explaining the high_i Hc and the shift of the thin minor loop. The exchange coupled SD model was found to explain the experimental results qualitatively without difficulties associated with the S-W model. The micromagnetic calculations using a finite element technique simulated the experimental results fairly well quntitatively.

      • SCISCIESCOPUS

        Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells

        Li, J.,Kim, S.,Nam, D.,Liu, X.,Kim, J.,Cheong, H.,Liu, W.,Li, H.,Sun, Y.,Zhang, Y. North-Holland ; Elsevier Science Ltd 2017 Solar energy materials and solar cells Vol.159 No.-

        The defects states and carrier density of CZTSe absorber layers are two of the crucial factors that decide the photovoltaic performance of CZTSe thin film solar cells. Fine tailoring the defects and carrier density is a key to push the power conversion efficiency of CZTSe solar cells to a more competitive level. In this work, the phase properties, defect states, and carrier density of CZTSe thin film are well controlled by fine tuning the ratio of Zn/Sn in the range from 0.75 to 1.27. Capacity-Voltage measurements and Admittance Spectroscopy are used to characterize the carrier density, depletion region width, and defect states of the CZTSe solar cells. The results indicate that the defects states and carrier density of CZTSe layer are very sensitive to the ratio of Zn/Sn. Combining experimental results and numerical simulation, the statistic regularities of the photovoltaic parameters of the CZTSe solar cells with different ratios of Zn/Sn is well explained. The increase of V<SUB>OC</SUB> of CZTSe solar cells with the ratio of Zn/Sn is related to both the increased carrier density and the decreased deep level defects states. The decline of J<SUB>SC</SUB> of the Zn-rich solar cells is caused by both the shrunken depletion region width and a large barrier caused by ZnSe phase. This barrier is the cause for a low fill factor in the Zn-rich solar cells. Overall, the CZTSe solar cells with a stoichiometric ratio of Zn/Sn=1.02 have favorable defects property and carrier density, thus resulting in the highest photovoltaic efficiency of 10.21%.

      • SCISCIESCOPUS

        Electrolyte effect on the catalytic performance of Ni-based catalysts for direct internal reforming molten carbonate fuel cell

        Li, Z.,Devianto, H.,Yoon, S.P.,Han, J.,Lim, T.H.,Lee, H.I. Pergamon Press ; Elsevier Science Ltd 2010 International journal of hydrogen energy Vol.35 No.23

        An active and tolerant Ni-based catalyst for methane steam reforming in direct internal reforming molten carbonate fuel cells (DIR-MCFCs) was developed. Deactivation of reforming catalysts by alkali metals from the electrolyte composed of Li<SUB>2</SUB>CO<SUB>3</SUB> and K<SUB>2</SUB>CO<SUB>3</SUB> is one of the major obstacles to be overcome in commercialization of DIR-MCFCs. Newly developed Ni/MgSiO<SUB>3</SUB> and Ni/Mg<SUB>2</SUB>SiO<SUB>4</SUB> reforming catalysts show activities of ca. 80% methane conversion. Subsequent to electrolyte addition to the catalyst, however, the activity of Ni/Mg<SUB>2</SUB>SiO<SUB>4</SUB> decreases to ca. 50% of its initial value, whereas Ni/MgSiO<SUB>3</SUB> catalyst retains its initial activity. Results obtained from temperature-programmed reduction and X-ray photoelectron spectroscopy identify unreduced Ni<SUP>3+</SUP> as a decisive factor in keeping catalytic activity from the electrolyte.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼