RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Improving the Calorific Value of Nyamplung (Calophyllum inophyllum L.) Seed Shell Pellets by Torrefaction Treatment for Their Use as a Renewable Energy Resource

        Johanes Pramana Gentur SUTAPA,Geraldy KIANTA,Budi LEKSONO,Ahmad Harun HIDAYATULLAH 한국목재공학회 2024 목재공학 Vol.52 No.4

        Nyamplung (Calophyllum inophyllum L.) seeds, which account for 40% of the fruit, have been used as a raw material for biofuels, and the seed shells remaining after their extraction are wasted. In this study, we investigated the potential of waste Nyamplung seed shells in the form of pellets as a biomass energy resource. A completely randomized research design was implemented to evaluate the effects of torrefaction and heat treatment on the quality of produced pellets. Two observed treatments, namely, particle size (0.18–0.25, 0.25–0.43, and 0.43–0.84 mm) and torrefaction temperature (200℃, 225℃, and 250℃), were investigated. Our results showed that the calorific value of torrefied Nyamplung seed-shell pellets ranged from 4,245.60 to 4,528.00 cal/g, fulfilling the Indonesia Nasional Standard (≥ 4,000 cal/g). The quality of pellets were the best when produced from raw materials with a particle size of 0.18–0.25 mm and torrefaction temperature of 225℃. Thus, we concluded that waste Nyamplung seed shells are a good raw material for the production of pellets.

      • KCI등재

        Natural and anthropogenic impacts on mangrove carbon dynamics: a systematic review protocol

        Gilang Qur’ani Citra,이보라,Sasmito Sigit D.,Maulana Agus Muhamad,설미현,Wiradana Putu Angga,Leksono Budi,Watiniasih Ni Luh,Baral Himlal 한국산림과학회 2024 Forest Science And Technology Vol.20 No.1

        The mangrove ecosystem serves as a vital habitat for coastal flora and fauna while playing a crucial role in storing and sequestering carbon as part of global carbon cycles. Therefore, it is imperative to evaluate the carbon dynamics, encompassing storage and sequestration, within mangrove ecosystems and their interconnectedness with natural climate fluctuations and anthropogenic influences, including land-use and land-cover changes (LULCC). Although there has been an increase in monitoring data and literature on mangrove carbon dynamics over the past two decades, there is still limited understanding regarding how climate variability, when combined with anthropogenic drivers, moderates the resilience of carbon storage and sequestration in mangroves. This study aims to build upon and enhance the previous systematic review conducted by Sasmito et al. (2019). Our specific objectives involve collating more recent literature published since 2018 and strengthening the analysis of carbon loss and recovery in tree biomass across different species, as well as its correlation with local and regional climate variations. Additionally, we will explore the impact of various types of land-use and land-cover changes on mangrove forests. Our systematic review will focus on field-based data collected from the Asia Pacific mangrove region, which represents the world’s largest and most diverse mangrove ecosystem and has been extensively studied in comparison to other regions, as indicated by previous systematic reviews. To gather relevant literature, we will conduct comprehensive searches across various databases, including Scopus, Web of Science, and Google Scholar. The structure established by Sasmito et al. (2019) for literature search, screening, and data extraction will be adopted. Data analysis will involve comparing carbon storage and sequestration under locally and regionally varying climatic conditions and anthropogenic influences. Furthermore, we will employ geographical mapping techniques to visualize species distribution and diversity with

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼