RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Measuring Parametric and Volumetric Errors in a Four-Axis CMM Using a Hole Plate

        Tsung-Han Hsieh,Ming-Xian Lin,Kuan-Ting Yeh 한국정밀공학회 2024 International Journal of Precision Engineering and Vol.25 No.5

        Recently, a four-axis coordinate measuring machine (four-axis CMM), which consists of three linear axes and a single rotary axis, has been more widely used than a traditional three-axis CMM. The volumetric error influences the accuracy of the four-axis CMM. There are 27 parametric errors that contribute to the volumetric error. This study utilized a touch probe to measure the hole plate. This methodology can evaluate errors more accurately and reflect the operational conditions of the machines. The main procedures are as follows: (1) The hole plate was sequentially set up in three different planes. The touch probe was used to measure the hole plate using five different styluses. (2) The 27 parametric errors were analyzed using the coordinate deviations. The volumetric error was constructed using homogeneous transformation matrices. The volumetric error ranged from 0.35 to 1.55 μm without the single rotary axis and from 0.35 to 2.83 μm with the single rotary axis. (3) Three metrology instruments, namely a laser interferometer, an autocollimator, and a polygon-autocollimator, were used to validate the proposed methodology and verify the measured parametric errors. The absolute maximum differences compared to the laser interferometer for three parametric positioning errors and the autocollimator for six parametric rotational errors for the three linear axes were 0.56 μm and 0.54″, respectively. Additionally, the absolute maximum difference of one parametric positioning error for the single rotary axis, compared with the polygon-autocollimator, was 0.75″. The En-values were 0.27, 0.54, and 0.27, respectively. These results demonstrate the effectiveness and reliability of the proposed methodology for the industry’s four-axis CMMs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼