RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Spent fuel characterization analysis using various nuclear data libraries

        Čalič Dušan,Kromar Marjan 한국원자력학회 2022 Nuclear Engineering and Technology Vol.54 No.9

        Experience shows that the solution to waste management in any national programme is lengthy and burdened with uncertainties. There are several uncertainties that contribute to the costs associated with spent fuel management. In this work, we have analysed the impact of the current nuclear data on the isotopic composition of the spent fuel and consequently their influence on the main spent fuel observables such as decay heat, activity, neutron multiplication factor, and neutron and photon source terms. Nuclear libraries based on the most general nuclear data ENDF/B-VII.0, ENDF/B-VII.1, ENDF/B-VIII.0 and JEFF-3.3 are considered. A typical NPP Krsko fuel assembly is analysed using the Monte Carlo code Serpent 2. The analysis considers burnup of up to 60 GWd/tU and cooling times of up to 100 years. The comparison of results showed significant differences, which should be taken into account when selecting the library and evaluating the uncertainty in determining the characteristics of the spent fuel

      • SCIESCOPUSKCI등재

        Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

        Tanja Goricanec,Andrej Kavcic,Marjan Kromar,Luka Snoj Korean Nuclear Society 2024 Nuclear Engineering and Technology Vol.56 No.2

        During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

      • SCIESCOPUSKCI등재

        Applicability of the Krško nuclear power plant core Monte Carlo model for the determination of the neutron source term

        Goricanec, Tanja,Stancar, Ziga,Kotnik, Domen,Snoj, Luka,Kromar, Marjan Korean Nuclear Society 2021 Nuclear Engineering and Technology Vol.53 No.11

        A detailed geometrical model of a Krško reactor core was developed using a Monte Carlo neutron transport code MCNP. The main goal of developing an MCNP core model is for it to be used in future research focused on ex-core calculations. A script called McCord was developed to generate MCNP input for an arbitrary fuel cycle configuration from the diffusion based core design package CORD-2, taking advantage of already available material and temperature data obtained in the nuclear core design process. The core model was used to calculate 3D power density profile inside the core. The applicability of the calculated power density distributions was tested by comparison to the CORD-2 calculations, which is regularly used for the nuclear core design calculation verification of the Krško core. For the hot zero power and hot full power states differences between MCNP and CORD-2 in the radial power density profile were <3%. When studying axial power density profiles the differences in axial offset were less than 2.3% for hot full power condition. To further confirm the applicability of the developed model, the measurements with in-core neutron detectors were compared to the calculations, where differences of 5% were observed.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼