RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCISCIESCOPUS

        On the diffusion coefficient calculation in two-step light water reactor core analysis

        Choi, Sooyoung,Smith, Kord S.,Kim, Hanjoo,Tak, Taewoo,Lee, Deokjung Atomic Energy Society of Japan 2017 Journal of nuclear science and technology Vol.54 No.6

        <P>This paper presents consistent and rigorous accuracy assessments of various methods for calculating the diffusion coefficients in a two-step reactor core analysis of light water reactors (LWRs). The diffusion coefficients are significantly affected by the transport correction and critical spectrum calculations. There are various methods for the transport corrections (inflow/outflow/hybrid corrections) and critical spectrum calculations (B-1/P-1/CASMO-4E methods) so that it is necessary to decide the best combination to achieve a high accuracy in the transport/diffusion two-step analysis. Numerical tests are performed step-by-step to search for the best combination of the methods by comparing each other the transport one-step results, transport/diffusion two-step results, and Monte Carlo results. Numerical test results with a large and a small LWR core show that the combination of inflow transport correction and CASMO-4E critical spectrum calculation is most accurate than the other combinations in terms of eigenvalues and assembly power distributions.</P>

      • KCI등재

        Improvements of the CMFD acceleration capability of OpenMOC

        Wenbin Wu,Guillaume Giudicelli,Kord Smith,Benoit Forget,Dong Yao,Yingrui Yu,Qi Luo 한국원자력학회 2020 Nuclear Engineering and Technology Vol.52 No.10

        Due to its computational efficiency and geometrical flexibility, the Method of Characteristics (MOC) has been widely used for light water reactor lattice physics analysis. Usually acceleration methods are necessary for MOC to achieve acceptable convergence on practical reactor physics problems. Among them, Coarse Mesh Finite Difference (CMFD) is very popular and can drastically reduce the number of transport iterations. In OpenMOC, CMFD acceleration was implemented but had the limitation of supporting only a uniform CMFD mesh, which would often lead to splitting MOC source regions, thus creating an unnecessary increase in computation and memory use. In this study, CMFD acceleration with a non-uniform Cartesian mesh is implemented into OpenMOC. We also propose a quadratic fit based CMFD prolongation method in the axial direction to further improve the acceleration when multiple MOC source regions are contained in one CMFD coarse mesh. Numerical results are presented to demonstrate the improvement of the CMFD acceleration capability in OpenMOC in terms of both efficiency and stability.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼