RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Impact of testicular shielding in liposarcoma to scrotum by using radio-photoluminescence glass dosimeter (RPLGD): a case report

        Puntiwa Oonsiri,Kitwadee Saksornchai,Sivalee Suriyapee 대한방사선종양학회 2018 Radiation Oncology Journal Vol.36 No.3

        Radiation protection in the scrotum to reduce the risk of genetic effect in the future is very important. This study aimed to measure the scrotal dose outside the treatment fields by using the radio-photoluminescence glass dosimeter (RPLGD). The characteristics of RPLGD model GD-302M were studied. Scattered dose to scrotum was measured in one liposarcoma case with the prescribed dose of 60 Gy. RPLGDs were placed in three different locations: one RPLGD was positioned at the posterior area which closer to the scrotum, and the other two RPLGDs were placed between the penis and the scrotum. Three RPLGDs were employed in each location. The scattered doses were measured in every fraction during the whole course of treatment. The entire number of 100 RPLGDs showed the uniformity within ±2%. The signal from RPLGD demonstrated linear proportion to the radiation dose (r = 0.999). The relative energy response correction factor was 1.05. The average scrotal dose was 4.1 ± 0.9 cGy per fraction. The results presented a wide range since there was a high uncertainty during RPLGD placement. The total scrotal dose for the whole course of treatment was 101.9 cGy (1.7% of the prescribed dose). The RPLGD model GD-302M could be used to measure scattered dose after applying the relative energy correction factor.

      • SCOPUSKCI등재

        Impact of testicular shielding in liposarcoma to scrotum by using radio-photoluminescence glass dosimeter (RPLGD): a case report

        Oonsiri, Puntiwa,Saksornchai, Kitwadee,Suriyapee, Sivalee The Korean Society for Radiation Oncology 2018 Radiation Oncology Journal Vol.36 No.3

        Radiation protection in the scrotum to reduce the risk of genetic effect in the future is very important. This study aimed to measure the scrotal dose outside the treatment fields by using the radio-photoluminescence glass dosimeter (RPLGD). The characteristics of RPLGD model GD-302M were studied. Scattered dose to scrotum was measured in one liposarcoma case with the prescribed dose of 60 Gy. RPLGDs were placed in three different locations: one RPLGD was positioned at the posterior area which closer to the scrotum, and the other two RPLGDs were placed between the penis and the scrotum. Three RPLGDs were employed in each location. The scattered doses were measured in every fraction during the whole course of treatment. The entire number of 100 RPLGDs showed the uniformity within ±2%. The signal from RPLGD demonstrated linear proportion to the radiation dose (r = 0.999). The relative energy response correction factor was 1.05. The average scrotal dose was 4.1 ± 0.9 cGy per fraction. The results presented a wide range since there was a high uncertainty during RPLGD placement. The total scrotal dose for the whole course of treatment was 101.9 cGy (1.7% of the prescribed dose). The RPLGD model GD-302M could be used to measure scattered dose after applying the relative energy correction factor.

      • KCI등재

        The effect of deep inspiration breath-hold technique on left anterior descending coronary artery and heart dose in left breast irradiation

        Pitchaya Sakyanun,Kitwadee Saksornchai,Chonnipa Nantavithya,Chakkapong Chakkabat,Kanjana Shotelersuk 대한방사선종양학회 2020 Radiation Oncology Journal Vol.38 No.3

        Purpose: To determine the effect of the deep inspiration breath-hold (DIBH) technique on left anterior descending coronary artery (LAD) region and heart dose in left breast cancer irradiation. Materials and Methods: Twenty-five left breast cancer patients who previously received breast-conserving surgery underwent computed tomography (CT) simulation with both free-breathing (FB) and DIBH techniques and four radiation treatment plans. The plan comprised the following with both the FB and DIBH techniques: whole breast (WB), and WB with internal mammary lymph nodes (WB+IMNs). The prescription dose was 50 Gy in 25 fractions. The doses to the LAD region, heart and lungs were compared. Moreover, in-field maximum heart distance (maxHD) and breast volume were analyzed for correlations with the mean heart dose (MHD). Results: In the WB plan with DIBH vs. FB techniques, the mean radiation doses to the LAD region, MHD, and the left lung V₂₀ were 11.48 Gy vs. 19.84 Gy (p < 0.0001), 2.95 Gy vs. 5.38 Gy (p < 0.0001), and 19.72% vs. 22.73% (p = 0.0045), respectively. In the WB+IMNs plan, the corresponding values were 23.88 Gy vs. 31.98 Gy (p < 0.0001), 6.43 Gy vs. 10.24 Gy (p < 0.0001), and 29.31% vs. 32.1% (p = 0.0009), respectively. MHD correlated with maxHD (r = 0.925) and breast volume (r = 0.6). Conclusion: The use of the DIBH technique in left breast cancer irradiation effectively reduces the radiation doses to the LAD region, heart and lungs. MHD is associated with maxHD and breast size.

      • KCI등재

        An effective patient training for deep inspiration breath hold technique of left-sided breast on computed tomography simulation procedure at King Chulalongkorn Memorial Hospital

        Puntiwa Oonsiri, MSc,Metinee Wisetrinthong,Manatchanok Chitnok,Kitwadee Saksornchai,Sivalee Suriyapee 대한방사선종양학회 2019 Radiation Oncology Journal Vol.37 No.3

        Purpose: To observe the effectiveness of the practical instruction sheet and the educational video for left-sided breast treatment in a patient receiving deep inspiration breath hold (DIBH) technique. Two parameters, simulation time and patient satisfaction, were assessed through the questionnaire. Methods: Two different approaches, which were the instruction sheet and educational video, were combinedly used to assist patients during DIBH procedures. The guideline was assigned at least 1 week before the simulation date. On the simulation day, patients would fill the questionnaire regarding their satisfaction with the DIBH instruction. The questionnaire was categorized into five levels: extremely satisfied to dissatisfied, sequentially. The patients were divided into four groups: not DIBH technique, DIBH without instruction materials, the DIBH with instruction sheet or educational video, and DIBH with both of instruction sheet and educational video. Results: Total number of 112 cases of left-sided breast cancer were analyzed. The simulation time during DIBH procedure significantly reduced when patients followed the instruction. There was no significant difference in simulation time on the DIBH procedures between patient compliance via instruction sheet or educational video or even following both of them. The excellent level was found at 4.6 ± 0.1 and 4.5 ± 0.1, for patients coaching via instruction sheet as well as on the educational video, respectively. Conclusion: Patient coaching before simulation could potentially reduce the lengthy time in the simulation process for DIBH technique. Practicing the DIBH technique before treatment is strongly advised.

      • SCOPUSKCI등재

        An effective patient training for deep inspiration breath hold technique of left-sided breast on computed tomography simulation procedure at King Chulalongkorn Memorial Hospital

        Oonsiri, Puntiwa,Wisetrinthong, Metinee,Chitnok, Manatchanok,Saksornchai, Kitwadee,Suriyapee, Sivalee The Korean Society for Radiation Oncology 2019 Radiation Oncology Journal Vol.37 No.3

        Purpose: To observe the effectiveness of the practical instruction sheet and the educational video for left-sided breast treatment in a patient receiving deep inspiration breath hold (DIBH) technique. Two parameters, simulation time and patient satisfaction, were assessed through the questionnaire. Methods: Two different approaches, which were the instruction sheet and educational video, were combinedly used to assist patients during DIBH procedures. The guideline was assigned at least 1 week before the simulation date. On the simulation day, patients would fill the questionnaire regarding their satisfaction with the DIBH instruction. The questionnaire was categorized into five levels: extremely satisfied to dissatisfied, sequentially. The patients were divided into four groups: not DIBH technique, DIBH without instruction materials, the DIBH with instruction sheet or educational video, and DIBH with both of instruction sheet and educational video. Results: Total number of 112 cases of left-sided breast cancer were analyzed. The simulation time during DIBH procedure significantly reduced when patients followed the instruction. There was no significant difference in simulation time on the DIBH procedures between patient compliance via instruction sheet or educational video or even following both of them. The excellent level was found at 4.6 ± 0.1 and 4.5 ± 0.1, for patients coaching via instruction sheet as well as on the educational video, respectively. Conclusion: Patient coaching before simulation could potentially reduce the lengthy time in the simulation process for DIBH technique. Practicing the DIBH technique before treatment is strongly advised.

      • KCI등재

        An effective patient training for deep inspiration breath hold technique of left-sided breast on computed tomography simulation procedure at King Chulalongkorn Memorial Hospital

        Puntiwa Oonsiri,Metinee Wisetrinthong,Manatchanok Chitnok,Kitwadee Saksornchai,Sivalee Suriyapee 대한방사선종양학회 2019 Radiation Oncology Journal Vol.37 No.3

        Purpose: To observe the effectiveness of the practical instruction sheet and the educational video for left-sided breast treatment in a patient receiving deep inspiration breath hold (DIBH) technique. Two parameters, simulation time and patient satisfaction, were assessed through the questionnaire. Methods: Two different approaches, which were the instruction sheet and educational video, were combinedly used to assist patients during DIBH procedures. The guideline was assigned at least 1 week before the simulation date. On the simulation day, patients would fill the questionnaire regarding their satisfaction with the DIBH instruction. The questionnaire was categorized into five levels: extremely satisfied to dissatisfied, sequentially. The patients were divided into four groups: not DIBH technique, DIBH without instruction materials, the DIBH with instruction sheet or educational video, and DIBH with both of instruction sheet and educational video. Results: Total number of 112 cases of left-sided breast cancer were analyzed. The simulation time during DIBH procedure significantly reduced when patients followed the instruction. There was no significant difference in simulation time on the DIBH procedures between patient compliance via instruction sheet or educational video or even following both of them. The excellent level was found at 4.6 ± 0.1 and 4.5 ± 0.1, for patients coaching via instruction sheet as well as on the educational video, respectively. Conclusion: Patient coaching before simulation could potentially reduce the lengthy time in the simulation process for DIBH technique. Practicing the DIBH technique before treatment is strongly advised.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼