RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
        • 학술지명
        • 주제분류
        • 발행연도
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Extraction of dietary fibers from cassava pulp and cassava distiller’s dried grains and assessment of their components using Fourier transform infrared spectroscopy to determine their further use as a functional feed in animal diets

        Okrathok Supattra,Thumanu Kanjana,Pukkung Chayanan,Molee Wittawat,Khempaka Sutisa 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.7

        Objective: The present study was to investigate the extraction conditions of dietary fiber from dried cassava pulp (DCP) and cassava distiller’s dried grains (CDG) under different NaOH concentrations, and the Fourier transform infrared (FTIR) was used to determine the dietary fiber components. Methods: The dried samples (DCP and CDG) were treated with various concentrations of NaOH at levels of 2%, 4%, 6%, and 8% using a completely randomized design with 4 replications of each. After extraction, the residual DCP and CDG dietary fiber were dried in a hot air oven at 55°C to 60°C. Finally, the oven dried extracted dietary fiber was powdered to a particle size of 1 mm. Both extracted dietary fibers were analyzed for their chemical composition and determined by FTIR. Results: The DCP and CDG treated with NaOH linearly or quadratically or cubically (p< 0.05) increased the total dietary fiber (TDF) and insoluble fiber (IDF). The optimal conditions for extracting dietary fiber from DCP and CDG were under treatment with 6% and 4% NaOH, respectively, as these conditions yielded the highest TDF and IDF contents. These results were associated with the FTIR spectra integration for a semi-quantitative analysis, which obtained the highest cellulose content in dietary fiber extracted from DCP and CDG with 6% and 4% NaOH solution, respectively. The principal component analysis illustrated clear separation of spectral distribution in cassava pulp extracted dietary fiber (DFCP) and cassava distiller’s dried grains extracted dietary fiber (DFCDG) when treated with 6% and 4% NaOH, respectively. Conclusion: The optimal conditions for the extraction of dietary fiber from DCP and CDG were treatment with 6% and 4% NaOH solution, respectively. In addition, FTIR spectroscopy proved itself to be a powerful tool for fiber identification. Objective: The present study was to investigate the extraction conditions of dietary fiber from dried cassava pulp (DCP) and cassava distiller’s dried grains (CDG) under different NaOH concentrations, and the Fourier transform infrared (FTIR) was used to determine the dietary fiber components.Methods: The dried samples (DCP and CDG) were treated with various concentrations of NaOH at levels of 2%, 4%, 6%, and 8% using a completely randomized design with 4 replications of each. After extraction, the residual DCP and CDG dietary fiber were dried in a hot air oven at 55°C to 60°C. Finally, the oven dried extracted dietary fiber was powdered to a particle size of 1 mm. Both extracted dietary fibers were analyzed for their chemical composition and determined by FTIR.Results: The DCP and CDG treated with NaOH linearly or quadratically or cubically (p< 0.05) increased the total dietary fiber (TDF) and insoluble fiber (IDF). The optimal conditions for extracting dietary fiber from DCP and CDG were under treatment with 6% and 4% NaOH, respectively, as these conditions yielded the highest TDF and IDF contents. These results were associated with the FTIR spectra integration for a semi-quantitative analysis, which obtained the highest cellulose content in dietary fiber extracted from DCP and CDG with 6% and 4% NaOH solution, respectively. The principal component analysis illustrated clear separation of spectral distribution in cassava pulp extracted dietary fiber (DFCP) and cassava distiller’s dried grains extracted dietary fiber (DFCDG) when treated with 6% and 4% NaOH, respectively.Conclusion: The optimal conditions for the extraction of dietary fiber from DCP and CDG were treatment with 6% and 4% NaOH solution, respectively. In addition, FTIR spectroscopy proved itself to be a powerful tool for fiber identification.

      • SCIESCOPUSKCI등재

        The significant influence of residual feed intake on flavor precursors and biomolecules in slow-growing Korat chicken meat

        Poompramun, Chotima,Molee, Wittawat,Thumanu, Kanjana,Molee, Amonrat Asian Australasian Association of Animal Productio 2021 Animal Bioscience Vol.34 No.10

        Objective: This study investigated the association between feed efficiency, physicochemical properties, flavor precursors and biomolecules in the thigh meat of Korat (KR) chickens. Methods: The feed intake and body weight of individual male KR chickens were recorded from 1 to 10 weeks old to calculate the individual residual feed intake (RFI) of 75 birds. At 10 weeks of age, chickens with the 10 highest (HRFI) and lowest RFI (LRFI) were slaughtered to provide thigh meat samples. The physicochemical properties (ultimate pH, water holding capacity [WHC], drip loss) and flavor precursors (guanosine monophosphate, inosine monophosphate (IMP), adenosine monophosphate and inosine) were analyzed conventionally, and Fourier transform infrared spectroscopy was used to identify the composition of biomolecules (lipids, ester lipids, amide I, amide II, amide III, and carbohydrates) and the secondary structure of the proteins. A group t-test was used to determine significant differences between mean values and principal component analysis to classify thigh meat samples into LRFI and HRFI KR chickens. Results: The physicochemical properties of thigh meat samples from LRFI and HRFI KR chickens were not significantly different but the IMP content, ratios of lipid, lipid ester, protein (amide I, amide II) were significantly different (p<0.05). The correlation loading results showed that the LRFI group was correlated with high ratios of lipids, lipid esters, collagen content (amide III) and beta sheet protein (rg loading >0.5) while the HRFI group was positively correlated with protein (amide I, amide II), alpha helix protein, IMP content, carbohydrate, ultimate pH and WHC (rg loading >0.5). Conclusion: The thigh meat from chickens with different RFI differed in physiochemical properties affecting meat texture, and in the contents of flavor precursors and biomolecules affecting the nutritional value of meat. This information can help animal breeders to make genetic improvements by taking more account of traits related to RFI.

      • KCI등재

        Alyssin and Iberin in Cruciferous Vegetables Exert Anticancer Activity in HepG2 by Increasing Intracellular Reactive Oxygen Species and Tubulin Depolymerization

        ( Piman Pocasap ),( Natthida Weerapreeyakul ),( Kanjana Thumanu ) 한국응용약물학회 2019 Biomolecules & Therapeutics(구 응용약물학회지) Vol.27 No.6

        To determine the chemopreventive potential of alyssin and iberin, the in vitro anticancer activities and molecular targets of isothiocyanates (ITCs) were measured and compared to sulforaphane in hepatocellular carcinoma cell HepG2. The SR-FTIR spectra observed a similar pattern vis-à-vis the biomolecular alteration amongst the ITCs-treated cells suggesting a similar mode of action. All of the ITCs in this study cause cancer cell death through both apoptosis and necrosis in concentration dependent manner (20-80 µM). We found no interactions of any of the ITCs studied with DNA. Notwithstanding, all of the ITCs studied increased intracellular reactive oxygen species (ROS) and suppressed tubulin polymerization, which led to cell-cycle arrest in the S and G<sub>2</sub>/M phase. Alyssin possessed the most potent anticancer ability; possibly due to its ability to increase intracellular ROS rather than tubulin depolymerization. Nevertheless, the structural influence of alkyl chain length on anticancer capabilities of ITCs remains inconclusive. The results of this study indicate an optional, potent ITC (viz., alyssin) because of its underlying mechanisms against hepatic cancer. As a consequence, further selection and development of effective chemotherapeutic ITCs is recommended.

      • KCI등재

        Effect of Salicylic Acid Formulations on Induced Plant Defense against Cassava Anthracnose Disease

        Rungthip Sangpueak,Piyaporn Phansak,Kanjana Thumanu,Supatcharee Siriwong,Sopone Wongkaew,Natthiya Buensanteai 한국식물병리학회 2021 Plant Pathology Journal Vol.37 No.4

        This study was to investigate defense mechanisms on cassava induced by salicylic acid formulation (SA) against anthracnose disease. Our results indicated that the SA could reduce anthracnose severity in cassava plants up to 33.3% under the greenhouse condition. The β-1,3-glucanase and chitinase enzyme activities were significantly increased at 24 hours after inocula- tion (HAI) and decrease at 48 HAI after Colletotrichum gloeosporioides challenge inoculation, respectively, for cassava treated with SA formulation. Synchrotron radi- ation–based Fourier-transform infrared microspectros- copy spectra revealed changes of the C=H stretching vibration (3,000-2,800 cm−1), pectin (1,740-1,700 cm−1), amide I protein (1,700-1,600 cm−1), amide II protein (1,600-1,500 cm−1), lignin (1,515 cm−1) as well as mainly C–O–C of polysaccharides (1,300-1,100 cm−1) in the leaf epidermal and mesophyll tissues treated with SA formulations, compared to those treated with fungicide carbendazim and distilled water after the challenged inoculation with C. gloeosporioides. The results indicate that biochemical changes in cassava leaf treated with SA played an important role in the enhancement of structural and chemical defense mechanisms leading to reduced anthracnose severity.

      • SCIEKCI등재SCOPUS

        Resistance Induction by Salicylic Acid Formulation in Cassava Plant against Fusarium solani

        Chanon Saengchan,Piyaporn Phansak,Kanjana Thumanu,Supatcharee Siriwong,Toan Le Thanh,Rungthip Sangpueak,Wannaporn Thepbandit,Narendra Kumar Papathoti,Natthiya Buensanteai 한국식물병리학회 2022 Plant Pathology Journal Vol.38 No.3

        Fusarium root rot caused by the soil-borne fungus Fusarium solani is one of the most important fungal diseases of cassava in Thailand, resulting in high yield losses of more than 80%. This study aimed to investigate if the exogenous application of salicylic acid formulations (Zacha) can induce resistance in cassava against Fusarium root rot and observe the biochemical changes in induced cassava leaf tissues through synchrotron radiation based on Fourier-transform infrared (SR-FTIR) microspectroscopy. We demonstrated that the application of Zacha11 prototype formulations could induce resistance against Fusarium root rot in cassava. The in vitro experimental results showed that Zacha11 prototype formulations inhibited the growth of F. solani at approximately 34.83%. Furthermore, a significant reduction in the disease severity of Fusarium root rot disease at 60 days after challenge inoculation was observed in cassava plants treated with Zacha11 at a concentration of 500 ppm (9.0%). Population densities of F. solani were determined at 7 days after inoculation. Treatment of the Zacha11 at a concentration of 500 ppm resulted in reduced populations compared with the distilled water control and differences among treatment means at each assay date. Moreover, the SRFTIR spectral changes of Zacha11-treated epidermal tissues of leaves had higher integral areas of lipids, lignins, and pectins (1,770-1,700/cm), amide I (1,700-1,600/ cm), amide II (1,600-1,500/cm), hemicellulose, lignin (1,300-1,200/cm), and cellulose (1,155/cm). Therefore, alteration in defensive carbohydrates, lipids, and proteins contributed to generate barriers against Fusarium invasion in cassava roots, leading to lower the root rot disease severity.

      • KCI등재후보

        Revealing the global mechanism related to carnosine synthesis in the pectoralis major of slow-growing Korat chickens using a proteomic approach

        Sinpru Panpradub,Suwanvichanee Chanadda,Bunnom Rujjira,Kubota Satoshi,Yongsawatdigul Jirawat,Molee Wittawat,Thumanu Kanjana,Molee Amonrat 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.10

        Objective: This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach.Methods: M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 μg/g; n = 5) and high-carnosine (HC, 4,212.5 ±82.88 μg/g; n = 5).Results: We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (p<0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, protein disulfide isomerase family A, member 6, and endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (false discovery rate<0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction. These consequences improve meat characteristics, which were confirmed by the principal component analysis.Conclusion: Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach. Objective: This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach. Methods: M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.6±82.88 μg/g; n = 5) and high-carnosine (HC, 4,212.5 ±82.88 μg/g; n = 5). Results: We identified 152 common proteins, and 8 of these proteins showed differential expression between the LC and HC groups (p<0.05). Heat shock 70 kDa protein 8, Heat shock 70 kDa protein 2, protein disulfide isomerase family A, member 6, and endoplasmic reticulum resident protein 29 were significantly involved in protein processing in the endoplasmic reticulum pathway (false discovery rate<0.05), suggesting that the pathway is related to differential carnosine concentration in the M. pectoralis major of KRC. A high concentration of carnosine in the meat is mainly involved in low abundances of Titin isoform Ch12 and Connectin and high abundances of M-protein to maintain homeostasis during muscle contraction. These consequences improve meat characteristics, which were confirmed by the principal component analysis. Conclusion: Carnosine synthesis may occur when muscle cells need to recover homeostasis after being interfered with carnosine synthesis precursors, leading to improved muscle function. To the best of our knowledge, this is the first study to describe in detail the global molecular mechanisms in divergent carnosine contents in meat based on the proteomic approach.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼