RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Chemical composition and standardized ileal digestibility of crude protein and amino acid in whole yeast and autolyzed yeast derived from sugarcane ethanol production fed to growing pigs

        Kaewtapee Chanwit,Jantra Nontawut,Petchpoung Krittaya,Rakangthong Choawit,Bunchasak Chaiyapoom 아세아·태평양축산학회 2022 Animal Bioscience Vol.35 No.9

        Objective: This research determined the chemical composition and the apparent and standardized ileal digestibility (AID and SID) of crude protein (CP) and amino acids (AA) in whole yeast and autolyzed yeast derived from sugarcane ethanol production fed to growing pigs. Methods: Six growing pigs were randomly allocated in a replicated 3×3 Latin square design with 3 diets and 3 periods of 7 days each, resulting in a total of 6 experimental replications. Three assay diets were formulated using whole yeast, autolyzed yeast, or soybean meal as the sole sources of dietary CP and AA. Pigs were allowed to adapt to the assay diets for 5 days. Thereafter, ileal digesta samples were collected continuously for 8 hours on days 6 and 7. Results: There was no difference in the chemical composition between whole yeast and autolyzed yeast, but whole yeast had low digestibility of CP and AA due to the presence of a rigid cell wall. As conducting autolysis can induce cell wall damage, the AID and SID of CP and AA were greater in autolyzed yeast than in whole yeast. Conclusion: The information obtained on the SID of CP and AA in both yeast products can be used for the accurate estimation of the bioavailability of CP and AA in feed formulations. The yeast products derived from sugarcane ethanol production are an alternative protein source in pig diets. Objective: This research determined the chemical composition and the apparent and standardized ileal digestibility (AID and SID) of crude protein (CP) and amino acids (AA) in whole yeast and autolyzed yeast derived from sugarcane ethanol production fed to growing pigs.Methods: Six growing pigs were randomly allocated in a replicated 3×3 Latin square design with 3 diets and 3 periods of 7 days each, resulting in a total of 6 experimental replications. Three assay diets were formulated using whole yeast, autolyzed yeast, or soybean meal as the sole sources of dietary CP and AA. Pigs were allowed to adapt to the assay diets for 5 days. Thereafter, ileal digesta samples were collected continuously for 8 hours on days 6 and 7.Results: There was no difference in the chemical composition between whole yeast and autolyzed yeast, but whole yeast had low digestibility of CP and AA due to the presence of a rigid cell wall. As conducting autolysis can induce cell wall damage, the AID and SID of CP and AA were greater in autolyzed yeast than in whole yeast.Conclusion: The information obtained on the SID of CP and AA in both yeast products can be used for the accurate estimation of the bioavailability of CP and AA in feed formulations. The yeast products derived from sugarcane ethanol production are an alternative protein source in pig diets.

      • SCIESCOPUSKCI등재

        Predicting standardized ileal digestibility of lysine in full-fat soybeans using chemical composition and physical characteristics

        Chanwit Kaewtapee,Rainer Mosenthin Asian Australasian Association of Animal Productio 2024 Animal Bioscience Vol.37 No.6

        Objective: The present work was conducted to evaluate suitable variables and develop prediction equations using chemical composition and physical characteristics for estimating standardized ileal digestibility (SID) of lysine (Lys) in full-fat soybeans (FFSB). Methods: The chemical composition and physical characteristics were determined including trypsin inhibitor activity (TIA), urease activity (UA), protein solubility in 0.2% potassium hydroxide (KOH), protein dispersibility index (PDI), lysine to crude protein ratio (Lys:CP), reactive Lys:CP ratio, neutral detergent fiber, neutral detergent insoluble nitrogen (NDIN), acid detergent insoluble nitrogen (ADIN), acid detergent fiber, L* (lightness), and a* (redness). Pearson's correlation (r) was computed, and the relationship between variables was determined by linear or quadratic regression. Stepwise multiple regression was performed to develop prediction equations for SID of Lys. Results: Negative correlations (p<0.01) between SID of Lys and protein quality indicators were observed for TIA (r = -0.80), PDI (r = -0.80), and UA (r = -0.76). The SID of Lys also showed a quadratic response (p<0.01) to UA, NDIN, TIA, L*, KOH, a* and Lys:CP. The best-fit model for predicting SID of Lys in FFSB included TIA, UA, NDIN, and ADIN, resulting in the highest coefficient of determination (R<sup>2</sup> = 0.94). Conclusion: Quadratic regression with one variable indicated the high accuracy for UA, NDIN, TIA, and PDI. The multiple linear regression including TIA, UA, NDIN, and ADIN is an alternative model used to predict SID of Lys in FFSB to improve the accuracy. Therefore, multiple indicators are warranted to assess either insufficient or excessive heat treatment accurately, which can be employed by the feed industry as measures for quality control purposes to predict SID of Lys in FFSB.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼