RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Structural Modification of Organic Thin-Film Transistors for Photosensor Application

        정현석,배진혁,이현주,Joel Ndikumana,박재훈 한국물리학회 2018 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.72 No.10

        We investigated the light response characteristics of bottom-gate/top-contact organic TFTs fabricated using pentacene and polystyrene as an organic semiconductor and a polymeric insulator, respectively. The pentacene TFT with overlaps (50 μm) between the source and gate electrodes as well as between the drain and gate electrodes exhibited negligible hysteresis in its transfer characteristics upon reversal of the gate voltage sweep direction. When the TFTs were structurally modified to produce an underlap structure between the source and gate electrodes, clockwise hysteresis and a drain-current decrease were observed, which were further augmented by increasing the gate underlap (from 30 μm to 50 μm and 70 μm). Herein, these results are explained in terms of space charge formation and accumulation capacitance reduction. Importantly, we found that space charges formed under the source electrode contributed to the drain currents via light irradiation through the underlap region. Under constant bias conditions, the TFTs with gate underlap structures thus exhibited on-state drain current changes in response to light signals. In our study, an optimal photosensitivity exceeding 11 was achieved by the TFT with a 30 μm gate underlap. Consequently, we suggest that gate underlap structure modification is a viable means of implementing light responsiveness in organic TFTs.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼