RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 좁혀본 항목 보기순서

        • 원문유무
        • 원문제공처
        • 등재정보
          펼치기
        • 학술지명
          펼치기
        • 주제분류
        • 발행연도
          펼치기
        • 작성언어

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Adverse effect of DEHP exposure on the serum insulin level of Balb/c mice

        Jing Wang,Jinquan Li,Kashif Rafiq Zahid,Kun Wang,Yan Qian,Ping Ma,Shumao Ding,Xu Yang,Xianliang Wang,Xianliang Wang,Xu Yang 대한독성 유전단백체 학회 2016 Molecular & cellular toxicology Vol.12 No.1

        Di(2-ethylhexyl) phthalate (DEHP) is a common indoor pollutant in the world, which may cause lots of harmful effects in human including diabetes according to epidemiological studies. To explore the underlying role of DEHP in diabetes-like symptoms, Balb/c mice were chose to be the experimental animals in this paper. They were separated as eight groups as follows: (1) saline+normal diet (vehicle control), (2) 10 mg/kg.day DEHP+normal diet, (3) 50 mg/kg.day DEHP+normal diet, (4) 250 mg/kg.day DEHP+normal diet, (5) streptozotocin (STZ)+high fat diet (diabetes model), (6) 10 mg/kg.day DEHP+ STZ+high fat diet, (7) 50 mg/kg.day DEHP+STZ +high fat diet, (8) 250 mg/kg.day DEHP+STZ+high fat diet. The biomarkers of this experiment include four groups: (1) general indicates: body weight and drinking water, (2) blood biomarkers: serum insulin and fasting glucose, (3) pathological examination: pancreas section and kidney section, and (4) biomarkers of oxidative stress: reactive oxygen species (ROS) and malondialdehyde (MDA) in liver cells. Our study results demonstrate that: (1) at our treatment levels DEHP cannot directly induce diabetes, but reduce serum insulin level in DEHP-exposed non-STZ-treated animals, (2) pathological examination finds that these is a dose-dependent damage in the pancreas in DEHP- exposed STZ-treated groups, and (3) the oxidative mechanism may be involved in this pathological process.

      • SCIESCOPUSKCI등재

        SNP Discovery from Transcriptome of Cashmere Goat Skin

        Wang, Lele,Zhang, Yanjun,Zhao, Meng,Wang, Ruijun,Su, Rui,Li, Jinquan Asian Australasian Association of Animal Productio 2015 Animal Bioscience Vol.28 No.9

        The goat Capra hircus is one of several economically important livestock in China. Advances in molecular genetics have led to the identification of several single nucleotide variation markers associated with genes affecting economic traits. Validation of single nucleotide variations in a whole-transcriptome sequencing is critical for understanding the information of molecular genetics. In this paper, we aim to develop a large amount of convinced single nucleotide polymorphisms (SNPs) for Cashmere goat through transcriptome sequencing. In this study, the transcriptomes of Cashmere goat skin at four stages were measured using RNA-sequencing and 90% to 92% unique-mapped-reads were obtained from total-mapped-reads. A total of 56,231 putative SNPs distributed among 10,057 genes were identified. The average minor allele frequency of total SNPs was 18%. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Our follow up biological validation revealed that 64% of SNPs were true SNPs. Our results show that RNA-sequencing is a fast and efficient method for identification of a large number of SNPs. This work provides significant genetic resources for further research on Cashmere goats, especially for the high density linkage map construction and genome-wide association studies.

      • Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reactions.

        Wang, Yong,Becker, Michael,Wang, Li,Liu, Jinquan,Scholz, Roland,Peng, Juan,,sele, Ulrich,Christiansen, Silke,Kim, Dong Ha,Steinhart, Martin American Chemical Society 2009 Nano letters Vol.9 No.6

        <P>Up to now, little effort has been made to exploit large-area high-throughput patterning by block copolymer (BCP) lithography to generate nanostructured substrates with periods well below 100 nm for surface-enhanced Raman scattering (SERS). We show that simple BCP-templated galvanic displacement reactions yield dense arrays of mushroom-shaped gold nanopillars with a period of 50 nm. The nanoporous BCP films used as templates were obtained by swelling-induced reconstruction of reverse micelle monolayers deposited on silicon wafers. Coupling of adjacent mushroom caps almost impinging on each other combined with their strong local curvature results in a high spatial density of hot spots in the narrow gaps between them. Thus, substrates characterized by high SERS efficiencies are obtained.</P>

      • KCI등재

        Molecular identification of DNA barcoding of Leguminous toxic species and quantitative analysis by ELISA kits

        Wang Jie,Wang Shuangyu,Sun Fenglin,Liu Chang,Zhao Jinquan,Yu Hongwei,Lv Xiaojing,Liu Ze,Bu Shuhua,Yu Weisen 한국식물생명공학회 2024 Plant biotechnology reports Vol.18 No.2

        Some edible Leguminous are toxic when raw, and the Chinese are particularly fond of beans, so Leguminous poisoning is very common in China. Rapid and accurate identification of poisoned species and determination of their toxic components would better assist physicians in treating patients. However, traditional morphology-based identification methods possess many limitations. DNA barcoding technique is a new species identification technique developed in recent years, which is expected to make up for the shortcomings of traditional morphological identification. In this study, a comprehensive evaluation system based on DNA barcoding and ELISA kits was attempted. A total of 30 Leguminous toxic plants were collected, involving 9 genera and 10 species. We used simulated gastric fluid (SGF) to simulate the human gastric environment. Three markers (rbcL, trnH-psbA, and ITS) were amplified and sequenced for all untreated and 15 mock-digested samples. The validity of DNA barcoding for species identification was assessed using the Basic Local Alignment Search Tool (BLAST) method and the tree construction method. The levels of three toxic components (saponin, phytoagglutin and trasylol) were determined in all samples using ELISA kits. The amplification success rate of all three regions was high (rbcL 96.67%, trnH-psbA 100%, and ITS 100%), but the sequencing of the trnH-psbA region was less satisfactory (66.67%), and SGF had a significant impact on the sequencing of the ITS region (After 40 min of SGF treatment, the sequencing success rate decreased by 46.67%). The samples from different species and origins contained different levels of toxic components, and the levels of all three sub- stances decreased significantly after undergoing SGF digestion. After 1 h of SGF treatment, the saponin content decreased to 0–8.60% in untreated content (PHA decreased to 8.62–36.88%, trasylol decreased to 4.70–47.06%). The current results suggest that DNA barcoding has great potential for rapid identification of Leguminous poisoning in clinical settings. Toxins are probably not detectable in the patient for longer periods of poisoning. We recommend DNA barcoding technology as a first step for rapid screening and combined with toxin analysis for clinical diagnosis.

      • KCI등재

        A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

        JinQuan Wang,YiJun Wang,GuangWen Liu,GuiFen Chen 한국인터넷정보학회 2023 KSII Transactions on Internet and Information Syst Vol.17 No.4

        With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.

      • KCI등재

        SNP Discovery from Transcriptome of Cashmere Goat Skin

        Lele Wang,Yanjun Zhang,Meng Zhao,Ruijun Wang,Rui Su,Jinquan Li 아세아·태평양축산학회 2015 Animal Bioscience Vol.28 No.9

        The goat Capra hircus is one of several economically important livestock in China. Advances in molecular genetics have led to the identification of several single nucleotide variation markers associated with genes affecting economic traits. Validation of single nucleotide variations in a whole-transcriptome sequencing is critical for understanding the information of molecular genetics. In this paper, we aim to develop a large amount of convinced single nucleotide polymorphisms (SNPs) for Cashmere goat through transcriptome sequencing. In this study, the transcriptomes of Cashmere goat skin at four stages were measured using RNA-sequencing and 90% to 92% unique-mapped-reads were obtained from total-mapped-reads. A total of 56,231 putative SNPs distributed among 10,057 genes were identified. The average minor allele frequency of total SNPs was 18%. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Our follow up biological validation revealed that 64% of SNPs were true SNPs. Our results show that RNA-sequencing is a fast and efficient method for identification of a large number of SNPs. This work provides significant genetic resources for further research on Cashmere goats, especially for the high density linkage map construction and genome-wide association studies.

      • KCI등재

        Expression of fox-related genes in the skin follicles of Inner Mongolia cashmere goat

        Wenjing Han,Xiaoyan Li,Lele Wang,Honghao Wang,Kun Yang,Zhixin Wang,Ruijun Wang,Rui Su,Zhihong Liu,Yanhong Zhao,Yanjun Zhang,Jinquan Li 아세아·태평양축산학회 2018 Animal Bioscience Vol.31 No.3

        Objective: This study investigated the expression of genes in cashmere goats at different periods of their fetal development. Methods: Bioinformatics analysis was used to evaluate data obtained by transcriptome sequencing of fetus skin samples collected from Inner Mongolia cashmere goats on days 45, 55, and 65 of fetal age. Results: We found that FoxN1, FoxE1, and FoxI3 genes of the Fox gene family were probably involved in the growth and development of the follicle and the formation of hair, which is consistent with previous findings. Real-time quantitative polymerase chain reaction detecting system and Western blot analysis were employed to study the relative differentially expressed genes FoxN1, FoxE1, and FoxI3 in the body skin of cashmere goat fetuses and adult individuals. Conclusion: This study provided new fundamental information for further investigation of the genes related to follicle development and exploration of their roles in hair follicle initiation, growth, and development.

      • KCI등재

        Design and Experiment of an Automatic Temperature Control Device of Composite Shape-Stabilized Phase Change Material for Concrete Box Bridges

        Zhen Wang,Jianting Zhou,Leng Liao,Jinquan Zhang,Huabin Zhang 대한토목학회 2022 KSCE JOURNAL OF CIVIL ENGINEERING Vol.26 No.2

        To solve the problem of bridge surface cracking caused by an uneven temperature field inside and outside the web of a concrete box structure, an automatic temperature control device applied to the beam surface of a concrete box bridge in the daytime is developed. The device, hanging on the surface of the box girder webs, consists of a radiation cooling coating and a composite shape-stabilized phase change material. With reference to a bridge in Guizhou Province, finite element analysis, short-term temperature monitoring and temperature-drop monitoring are carried out using the device. The result shows that the automatic temperature control device works well continuously. For a box girder without an automatic temperature control device, the inside and outside of the web demonstrate different sensitivities to the temperature of the external environment, with a high temperature fluctuation and a relatively high temperature stress. For a box girder with an automatic temperature control device, as the cooling coating reflects part of the solar radiation and the phase transformation of the composite shape-stabilized phase change material releases or absorbs part of the latent heat to or from the external environment, the temperature fluctuation and temperature stress of the inside and outside of the web are relatively small. When the temperature suddenly drops, the automatic temperature control device works better than under conventional weather conditions because it can reduce the external temperature by approximately 50% on the outer surface of the box girder webs.

      • KCI등재후보

        Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

        Zhang Tao,Wang Zhiying,Li Yaming,Zhou Bohan,Liu Yifan,Li Jinquan,Wang Ruijun,Lv Qi,Li Chun,Zhang Yanjun,Su Rui 아세아·태평양축산학회 2024 Animal Bioscience Vol.37 No.7

        Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future.Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations.Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations.Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future. Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

      • A GA-Based Neural Fuzzy System for Modeling a Paper Mill Wastewater Treatment Process

        Huang, Mingzhi,Wan, Jinquan,Ma, Yongwen,Zhang, Huiping,Wang, Yan,Wei, Chaohai,Liu, Hongbin,Yoo, ChangKyoo American Chemical Society 2011 INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH - Vol.50 No.23

        <P>A genetic algorithm-based neural fuzzy system (GA-NFS) was presented for studying the coagulation process of wastewater treatment in a paper mill. In order to adapt the system to a variety of operating conditions and acquire a more flexible learning ability, the GA-NFS was employed to model the nonlinear relationships between the effluent concentration of pollutants and the chemical dosages, and a hybrid learning algorithm divided into two stages was proposed for parameters learning. During the first learning stage, a genetic algorithm was used to optimize the structure of GA-NFS and the membership function of each fuzzy term due to its capability of parallel and global search. On the basis of an optimized training stage, the back-propagation algorithm (BP algorithm) was chosen to update the parameters of GA-NFS to improve the system precision. The GA-NFS proves to be very effective in modeling coagulation perform and performs better than adaptive-network-based fuzzy inference system (ANFIS). RMSE, MAPE, and <I>R</I> between the predicted and observed values for GA-NFS were only 0.01099, 2.3337, and 0.9375, respectively.</P>

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼