RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • SCOPUSKCI등재

        Lung Function of Grain Millers Exposed to Grain Dust and Diesel Exhaust in Two Food Markets in Ibadan Metropolis, Nigeria

        Iyogun, Kemi,Lateef, Suraju A.,Ana, Godson R.E.E. Occupational Safety and Health Research Institute 2019 Safety and health at work Vol.10 No.1

        Background: Despite growing concern over occupational exposure to particulate matter (PM) such as grain dust and diesel exhaust, information about the exposure level and health implications among workers in small-scale milling enterprises in developing countries like Nigeria has not been adequately documented. The purpose of this study was to assess the level of exposure to grain dust and diesel exhaust and effect on lung function among grain millers in food markets in Ibadan metropolis, Nigeria. Methods: The study adopted descriptive cross-sectional design with a comparative approach. Sixteen grain milling shops each were randomly selected from two major food markets in Ibadan metropolis for indoor $PM_{10}$ and $PM_{2.5}$ monitoring. Seventy-two respondents each were proportionately selected from grain millers and shop owners for forced expiratory volume in one second and peak expiratory flow rate tests. Results: The $PM_{2.5}$ concentrations for both market locations ranged between 1,269.3 and $651.7{\mu}g/m^3$, while $PM_{10}$ concentrations were between 1,048.2 and $818.1{\mu}g/m^3$. The recorded concentrations exceeded the World Health Organization guideline limit of $50{\mu}g/m^3$ and $25{\mu}g/m^3$ for $PM_{2.5}$ and $PM_{10}$, respectively. As compared with control group (2.1 L), significantly lower forced expiratory volume in one second value (1.61 L) was observed among the exposed group (p < 0.05). Likewise, significantly lower peak expiratory flow rate value (186.7 L/min) was recorded among the exposed group than the control group (269.51 L/min) (p < 0.05). Conclusion: Exposure to grain dust and diesel exhaust accentuated respiratory disorders with declines in lung functions amongst grain millers. Improved milling practices and engaging cleaner milling facilities should be adopted to minimize exposure and related hazards.

      • KCI등재

        Lung Function of Grain Millers Exposed to Grain Dust and Diesel Exhaust in Two Food Markets in Ibadan Metropolis, Nigeria

        Kemi Iyogun,Suraju A. Lateef,Godson R.E.E. Ana 한국산업안전보건공단 산업안전보건연구원 2019 Safety and health at work Vol.10 No.1

        Background: Despite growing concern over occupational exposure to particulate matter (PM) such as grain dust and diesel exhaust, information about the exposure level and health implications among workers in small-scale milling enterprises in developing countries like Nigeria has not been adequately documented. The purpose of this study was to assess the level of exposure to grain dust and diesel exhaust and effect on lung function among grain millers in food markets in Ibadan metropolis, Nigeria. Methods: The study adopted descriptive cross-sectional design with a comparative approach. Sixteen grain milling shops each were randomly selected from two major food markets in Ibadan metropolis for indoor PM10 and PM2.5 monitoring. Seventy-two respondents each were proportionately selected from grain millers and shop owners for forced expiratory volume in one second and peak expiratory flow rate tests. Results: The PM2.5 concentrations for both market locations ranged between 1,269.3 and 651.7 mg/m3, while PM10 concentrations were between 1,048.2 and 818.1 mg/m3. The recorded concentrations exceeded the World Health Organization guideline limit of 50 mg/m3 and 25 mg/m3 for PM2.5 and PM10, respectively. As compared with control group (2.1 L), significantly lower forced expiratory volume in one second value (1.61 L) was observed among the exposed group (p < 0.05). Likewise, significantly lower peak expiratory flow rate value (186.7 L/min) was recorded among the exposed group than the control group (269.51 L/min) (p < 0.05). Conclusion: Exposure to grain dust and diesel exhaust accentuated respiratory disorders with declines in lung functions amongst grain millers. Improved milling practices and engaging cleaner milling facilities should be adopted to minimize exposure and related hazards.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼