RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Electrophoresis-deposition construction of covalently bonded interface material with enhanced thermal conductivity

        Fu Hao,Chen Guang,Gao Junchang,Wu Yadong,Tao Xin,Huang Youguo 한국탄소학회 2024 Carbon Letters Vol.34 No.5

        The thermal conductivity (TC) of graphene-based/metal composites is currently not satisfactory because of the existence of large interfacial thermal resistance between graphene and metal originating from the strong scattering of phonons. In this work, 6063Al-alloy-based reduced graphene oxide (rGO) composite with strong covalent bonds interface was prepared via self-assembly, reduction, and electrophoresis-deposition processes by using 3-aminopropyl triethoxysilane (APTS) as a link agent. Structural characterizations confirmed the successful construction of strong Al-O-Si-O-C covalent bonds in the as-prepared 6063Al-Ag-APTS-rGO composite, which can promote the transfer of phonons in the interface. Benefiting from the unique structure, 6063Al-Ag-APTS-rGO (214.1 W/mK) showed obviously higher cross-plane TC than 6063Al (195.6 W/mK). Comparative experiments showed that 6063Al-Ag-APTS-rGO has better cross-plane TC than 6063Al/Ag/APTS/rGO (196.6 W/mK) prepared via physical mixing of stirring process, evidencing the significance of electrophoresis-deposition (EPD) process on constructing strong covalent bonds for improving the heat dissipation performance. Besides, the effects of different rGO contents and test temperature on the TC of the composites and their corrosion resistance were also discussed. This work demonstrated a feasible strategy for the construction of metal–carbon interface composite with improved thermal performance.

      • KCI등재

        Transcriptome Sequencing Reveals the Potential Mechanisms of Modified Electroconvulsive Therapy in Schizophrenia

        Wanhong Peng,Qingyu Tan,Minglan Yu,Ping Wang,Tingting Wang,Jixiang Yuan,Dongmei Liu,Dechao Chen,Chaohua Huang,Youguo Tan,Kezhi Liu,Bo Xiang,Xuemei Liang 대한신경정신의학회 2021 PSYCHIATRY INVESTIGATION Vol.18 No.5

        Objective Schizophrenia (SCZ) is one of the most common and severe mental disorders. Modified electroconvulsive therapy (MECT) is the most effective therapy for all kinds of SCZ, and the underlying molecular mechanism remains unclear. This study is aim to detect the molecule mechanism by constructing the transcriptome dataset from SCZ patients treated with MECT and health controls (HCs).Methods Transcriptome sequencing was performed on blood samples of 8 SCZ (BECT: before MECT; AECT: after MECT) and 8 HCs, weighted gene co-expression network analysis (WGCNA) was used to cluster the different expression genes, enrichment and protein-protein interaction (PPI) enrichment analysis were used to detect the related pathways.Results Three gene modules (black, blue and turquoise) were significantly associated with MECT, enrichment analysis found that the long-term potentiation pathway was associated with MECT. PPI enrichment p-value of black, blue, turquoise module are 0.00127, <1×10<sup>-16</sup> and 1.09×10<sup>-13</sup>, respectively. At the same time, EP300 is a key node in the PPI for genes in black module, which got from the transcriptome sequencing data.Conclusion It is suggested that the long-term potentiation pathways were associated with biological mechanism of MECT.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼