RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Stiffness of bi-modulus hexagonal and diamond honeycombs

        Hamed Hatami-Marbini,Milad Rohanifar 대한기계학회 2019 JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY Vol.33 No.4

        Cellular materials are widely used in various applications because of their low density and high strength. The mechanical behavior of cellular materials under various loading conditions has been investigated. Nevertheless, many of these previous studies assume that the Young’s modulus of constituting struts is the same in tension and compression. The present work first derives analytical expressions for the effective Young’s moduli of hexagonal and diamond lattices composed of struts with different tension and compression moduli under the assumption of small strain deformation. It also uses the finite element method to further investigate the mechanical responses of these lattices. The macroscopic Young’s moduli under both compressive and tensile loads are reported as a function of the ratio of compression and tension moduli of constituting struts. The numerical finite element models are implemented by a user defined material subroutine in ABAQUS. Results reveal that the effective Young’s moduli of periodic hexagonal and diamond lattices significantly decrease with decreasing ratio of compression and tension moduli of the struts. Furthermore, the mechanical behavior of hexagonal lattices composed of struts with different tension–compression moduli is dependent on the loading direction and whether they are compressed or stretched. The unique mechanical properties of bi-modulus cellular materials could find important applications in the automotive and construction industries.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼