RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Mechanism for Sustainable Magnetic Nanoparticles under Ambient Conditions

        N. H. Hai,N. D. Phu,N. H. Luong,N. Chau,H. D. Chinh,L. H. Hoang,D. L. Leslie-Pelecky 한국물리학회 2008 THE JOURNAL OF THE KOREAN PHYSICAL SOCIETY Vol.52 No.5

        Iron-based magnetic fluids are widely used in physical applications. Recently, they have been extended to many biological applications due to their magnetic and biocompatible properties. However, their stability under an ambient environment still has not been systematically investigated. In this report, we present the oxidation process of magnetic fluids. The oxidation process depends on the materials that make the nanoparticles, the diffusion of oxygen atoms from the environment to the magnetic nanoparticles, which mainly depends on the viscosity of the solution and the surfactant that coats the nanoparticles. We suggest three ways to protect nanoparticles from oxidation: (a) using highly viscous carrier liquid (b) using relevant surfactants and (c) substitution of Ni²+ and Co²+ for Fe²+ in magnetite. Methods (a) and (b) are general, so they can be applied for many environmentally sensitive magnetic fluids. Method (c) is specific for a magnetite fluid. Iron-based magnetic fluids are widely used in physical applications. Recently, they have been extended to many biological applications due to their magnetic and biocompatible properties. However, their stability under an ambient environment still has not been systematically investigated. In this report, we present the oxidation process of magnetic fluids. The oxidation process depends on the materials that make the nanoparticles, the diffusion of oxygen atoms from the environment to the magnetic nanoparticles, which mainly depends on the viscosity of the solution and the surfactant that coats the nanoparticles. We suggest three ways to protect nanoparticles from oxidation: (a) using highly viscous carrier liquid (b) using relevant surfactants and (c) substitution of Ni²+ and Co²+ for Fe²+ in magnetite. Methods (a) and (b) are general, so they can be applied for many environmentally sensitive magnetic fluids. Method (c) is specific for a magnetite fluid.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼