http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.
변환된 중국어를 복사하여 사용하시면 됩니다.
Centrifugal Infiltration Process of Fibrous Tubular Preform by Al-Cu Alloy
Li, Yanhong,Wang, Kai,Su, Yongkang,Hu, Guoxin The Korean Society for Composite Materials 2009 Advanced composite materials Vol.18 No.4
The kinetics of centrifugal infiltration of fibrous tubular preform is built theoretically, and simulations are conducted to study the effects of various casting conditions on infiltration kinetics and macrosegregation by combining with the energy, mass and kinetic equations. A similarity way is used to simplify the one-dimensional model and the parameter is ascertained by an iterative method. The results indicate that the increase of superheat, initial preform temperature, porosity tends to enlarge the remelting region and decrease copper solute concentration at the infiltration front. Higher angular velocity leads to smaller remelting region and solute concentration at the tip. The pressure in the infiltrated region increase significantly when the angular velocity is much higher, which requires a stronger preform. It is observed that the pressure distribution is mainly determined by the angular velocity, and the macrosegregation in the centrifugal casting is greatly dependent on the superheat of inlet metal matrix, initial temperature and porosity of the preform, and the angular velocity.
Jiankun Dong,Wenzhao Shi,Jinshu Liu,Shaofeng Lu,Hongjuan Zhou,Shanshan Cui,Manyan Zhang,Guoxin Su 한국섬유공학회 2023 Fibers and polymers Vol.24 No.9
Polyurethane phase change materials (PUPCMs) have been extensively applied in smart textiles and wearable electronic devices because of their excellent energy storage capacity. To realize the flexibility of PUPCMs for certain deformation and compact contact with objects, suitable support structures have been chosen to prepare polyurethane phase change composites (PUFPCCs) with energy storage capacity and device-level flexibility. In this work, PUPCM was prepared by the prepolymer method with polyethylene glycol (PEG) as the soft segment, 4,4-dicyclohexylmethane diisocyanate (HMDI) and 1,2-hexanediol as the hard segment. And polyurethane-based adhesives (PUA) were chosen to provide a support structure for PUFPCCs by physically blending and casting with prepared PUPCM. PUFPCCs showed good flexibility attributed to the film-forming performance of polyurethane-based adhesive in the composites. The chemical structure, crystallization properties, phase transformation properties and thermal stability of the prepared PUPCM and PUFPCCs were investigated via Fourier transform infrared spectroscopy (FT-IR), 1H NMR spectroscopy, X-ray diffraction (XRD), polarizing optical microscope (POM), differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis respectively. The phase change temperature of PUFPCCs ranged from 36 to 40 ℃. The maximum enthalpy value of PUFPCCs was up to 40 J/g for daily application. Moreover, the thermal stability of PUPCM was improved attribute to the support structure of PUA in PUFPCCs. Therefore, the prepared PUFPCCs have great potential for application in flexible wearable devices due to their excellent flexibility, suitable phase transition temperature close to human body temperature, high enthalpy value and improved thermal stability.