RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Hard Constrained LPV Virtual Control with Application to Flutter Suppression of a Smart Airfoil

        Ali M. H. Al-Hajjar,Sean Shan-Min Swei,Guoming George Zhu 제어·로봇·시스템학회 2020 International Journal of Control, Automation, and Vol.18 No.5

        Hard constrained control problems are popular in practical applications due to physical and power limitations. For instance, the displacement of a linear actuator is finite. A lot of studies have been conducted in this area to deal with certain hard constrained control problems and some are computationally expensive. This paper introduces a novel LPV (linear parameter-varying) virtual control scheme to deal with a class of hard constrained control problems with an application to flutter suppression of a smart airfoil, leading to a state-feedback LPV gain scheduling controller with the guaranteed H∞ performance. The basic idea of LPV virtual control is to add virtual components (such as variable stiffness springs and dampers) near to the hard constraints to prevent actuators from reaching their limits. The LPV virtual controller will be designed based on the model with virtual components and in the implementation stage, these virtual dynamics becomes part of the gain-scheduling controller. The concept is validated by a smart airfoil example. In the smart airfoil example, the virtual varying springs and dampers are placed at both ends of groove to constrain the mass movement. Comparisons studies with conventional LPV hard constrained control, nonlinear control, and regular LPV control without considering hard constraints are conducted to assess the performance of the proposed method and showed advantage over the existing methods. For instance, the control mass L2 norm is reduced by 77.5% over the nonlinear control and 35% over the conventional LPV Control.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼