RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        Compaction and Mechanical Characteristics and Stabilization Mechanism of Carbonated Reactive MgO-Stabilized Silt

        Guanghua Cai,Songyu Liu 대한토목학회 2017 KSCE JOURNAL OF CIVIL ENGINEERING Vol.21 No.7

        The reinforcement technology of carbonation based on reactive magnesia (MgO) and carbon dioxide (CO2) is a low-carbon and high-efficiency foundation treatment method. This paper investigates the compaction, mechanical and microstructural characteristics of carbonated reactive MgO-stabilized silt with varying MgO-soil ratios, carbonation time and water-soil ratios. The results indicate that the maximum dry density of uncarbonated reactive MgO-stabilized silt increases while the optimum moisture content reduces compared to the parent soil. The unconfined compressive strength of reactive MgO-stabilized soil was found to have increased after CO2 carbonation for several hours. With increasing MgO-soil ratio and carbonation time, the failure mode changes from elasticplastic to brittleness, and the failure strain of carbonated specimens mainly ranges between 0.8% and 1.6% and the ratio of the deformation modulus to unconfined compressive strength is about 30 to 200. The water-soil ratio has a slight influence on the evolution of strength. Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD) analyses have indicated that the carbonation products facilitate the strength growth of reactive MgO-stabilized silt. Thermogravimetric analysis (TGA) shows that CO2 uptake increases with increasing carbonation time and achieves the highest under the MgO-soil ratio of 20%, carbonation time of 6 h, and water-soil ratio of 25%. The stabilization mechanism of carbonated reactive MgO-stabilized silt is proposed according to microstructure analyses, providing a deeper understanding of the application of the reactive MgO carbonation technology in the ground reinforcement.

      • KCI등재

        Effect of MgO Activity Index on Physicochemical, Electrical and Mechanical Properties of Carbonated MgO-admixed Silt

        Guanghua Cai,Songyu Liu,Guangyin Du,Liang Wang 대한토목학회 2019 KSCE JOURNAL OF CIVIL ENGINEERING Vol.23 No.9

        The natural soil will have a significant strength improvement when admixed with reactive magnesia (MgO) and subjected to CO2 carbonation, which has been identified as an innovative and environment-friendly technique in the domain of soil treatment. MgO activity has been revealed to have a significant influence on the treatment effectiveness during the carbonation process. With this in view, the effect of MgO activity index on physicochemical, electrical and strength properties of carbonated silt was investigated. Results show that the MgO activity index and initial water-MgO ratio play crucial roles in controlling the aforementioned properties. With the initial water-MgO ratio reducing or MgO activity index increasing, the mass increment ratio, growth rate of unit weight, pH, resistivity, strength and CO2 sequestration increase to different degrees, while the volume increment ratio, water content, specific gravity, porosity and saturation degree decrease. The unconfined compressive strength shows a better linear relation with resistivity, indicating the applicability of resistivity method in the strength evaluation of carbonated MgO-admixed soil. Moreover, the thermal and microstructural analyses have explained the changing mechanism of physicochemical, electrical and strength properties. Finally, the analysis of the CO2 sequestration indicates that the carbonated MgO-admixed silt could achieve a high carbonation degree when the initial water-MgO ratio is less than 2.0, showing the feasibility of MgO carbonation in the CO2 sequestration.

      • KCI등재

        MicroRNA-3200-5p Promotes Osteosarcoma Cell Invasion via Suppression of BRMS1

        Li, Gen,Li, Li,Sun, Qi,Wu, Jiezhou,Ge, Wei,Lu, Guanghua,Cai, Ming Korean Society for Molecular and Cellular Biology 2018 Molecules and cells Vol.41 No.6

        Tumour metastasis is one of the most serious challenges of cancer as it is the major cause of mortality in patients with solid tumours, including osteosarcoma (OS). In this regard, anti-metastatic genes have potential for metastasis inhibition strategies. Recent evidence showed the importance of breast cancer metastasis suppressor 1 (BRMS1) in control of OS invasiveness, but the regulation of BRMS1 in OS remains largely unknown. Here, we used bioinformatics analyses to predict BRMS1-targeting microRNAs (miRNAs), and the functional binding of miRNAs to BRMS1 mRNA was evaluated using a dual luciferase reporter assay. Among all BRMS1-targeting miRNAs, only miR-151b, miR-7-5p and miR-3200-5p showed significant expression in OS specimens. Specifically, we found that only miR-3200-5p significantly inhibited protein translation of BRMS1 via pairing to the 3'-UTR of the BRMS1 mRNA. Moreover, we detected significantly lower BRMS1 and significantly higher miR-3200-5p in the OS specimens compared to the paired adjacent non-tumour bone tissues. Furthermore, BRMS1 and miR-3200-5p levels were inversely correlated to each other. Low BRMS1 was correlated with metastasis and poor patient survival. In vitro, overexpression of miR-3200-5p significantly decreased BRMS1 levels and promoted OS cell invasion and migration, while depletion of miR-3200-5p significantly increased BRMS1 levels and inhibited OS cell invasion and migration. Thus, our study revealed that miR-3200-5p may be a critical regulator of OS cell invasiveness.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼