RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제
      • 무료
      • 기관 내 무료
      • 유료
      • SCIESCOPUS

        Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

        Gaurav Kumar Yogesh,Rungsima Yeetsorn,Waritnan Wanchan,Michael Fowler,Kamlesh Yadav,Pankaj Koinkar The Korean Electrochemical Society 2024 Journal of electrochemical science and technology Vol.15 No.1

        Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mg<sub>Pt</sub><sup>-1</sup>, compared to commercial Pt and PtRu catalysts of 10-100 mA mg<sub>Pt</sub><sup>-1</sup>. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

      • KCI등재

        A simple nonenzymatic glucose sensor based on coconut shell charcoal powder-coated nickel foil electrode

        Edakkaparamban Shuaib,Parasseri Muhammed Shafi,Yogesh Gaurav Kumar,Arumugam Chandra Bose,Dillibabu Sastikumar 한국탄소학회 2021 Carbon Letters Vol.31 No.4

        In this work, a simple nonenzymatic glucose sensor has been proposed based on coconut shell charcoal (CSC) modifed nickel foil as working electrode in a three-electrode electrochemical cell. Charcoal was prepared by the pyrolysis of coconut shells. The most important advantages of coconut shells are cost-efectiveness and their abundance in nature. The morphology and phase of the CSC powder were characterized by scanning electron microscopy and X-ray difraction. The electrochemical performance of the CSC powder coated Nickel foil electrode was investigated by cyclic voltammetry and chronoamperometry. The sensor shows a higher sensitivity of 2.992 mA cm−2 mM−1 in the linear range of 0.5–5.5 mM and slightly lower sensitivity of 1.1526 mA cm−2 mM−1 in the range of 7–18.5 mM glucose concentration with a detection limit of 0.2 mM. The anti-interference property of CSC powder also was investigated and found that the response of interfering species was less signifcant compared to glucose response. The proposed sensor ofers good sensitivity, wide linear range, and a very low response to interfering biomolecules.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼