RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      검색결과 좁혀 보기

      선택해제

      오늘 본 자료

      • 오늘 본 자료가 없습니다.
      더보기
      • 무료
      • 기관 내 무료
      • 유료
      • A Study on the Status of Radioactive Effluent Release After Permanent Shutdown of PWR Nuclear Power Plants

        Kwangho Jo,Hyejin Jung,Gangwoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        In case of Korea, unlike overseas nuclear power plants, adjacent units are located in permanently stopped nuclear power plants. Radioactive substances from airborne and liquid effluents are released into the environment from the NPP, and the radioactivity of the released substances must be reported to the regulatory authorities. Radioactive effluents are released into the environment not only in operation but also after permanent shutdown. Due to domestic conditions in which multiple units exist on the same site, it is necessary to consider radioactive effluents generated after permanent shutdown of NPPs. In particular, liquid effluent may have an increased tritium concentration due to draining the spent fuel pool. This paper summarizes the annual liquid emissions of PWR power plants that have been permanently shut down. The data was obtained from the Nuclear Regulatory Commission’s (NRC) annual radioactive effluent release report, which provides information on the annual emissions power plants into the environment. The liquid emissions of each plant were organized into an annual table, providing an overview of the amount of liquid released by each plant. This study aims to raise awareness about the potential environmental impact of permanently shut down nuclear power plants and the need for proper management of their liquid emissions. The findings of this study can used by operator, policymakers, and other stakeholders to make informed decisions regarding the decommissioning and management of nuclear power plants.

      • A Review on Liquid Radioactive Waste Generated for Decommissioning of NPP

        HyunMin Kim,JunKi Baik,SukWon Jung,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. The amount of these wastes must be defined in the Final Decommissioning Plan for approval of the licensing. Also, in the case of liquid radioactive waste, it is necessary to calculate the generation amount in order to treat radioactive waste at a Radioactive Waste Treatment Facility (RWTF) or on-site. In this regard, there is no Code and Standard for the amount of liquid radioactive waste generated during NPP are dismantled, but ANSI/NS-55.6 describes the amount of liquid radioactive waste generated from a light water reactor type NPP. This code is applied to nuclear power-related facilities such as domestic NPP and radioactive waste disposal facility. Therefore, this review intends to suggest an application plan for domestic NPP decommissioning through codes for liquid radioactive waste expected to generate during nuclear power plant decommissioning.

      • A Review on Liquid Radioactive Waste Processing System for Radioactive Waste Treatment Facility

        HyunMin Kim,JunKi Baik,SukWon Jung,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The type of radioactive waste that may occur in the process of NPP dismantling can be classified into solid, liquid, gas, and mixed waste. Most of the radioactive waste generated during the dismantling of a NPP is metal solid waste, but liquid radioactive waste is also a very important factor in terms of radiation environmental impact assessment. In the case of liquid radioactive waste, it is necessary to calculate the generation amount in order to design liquid radioactive waste processing system of Radioactive Waste Treatment Facility (RWTF). Depending on the amount of liquid radioactive waste generated, the type of liquid radioactive waste processing system included in the RWTF is different. In addition, in order to apply to the domestic RWTF, it is important to secure the site area occupied by the each system, the liquid radioactive waste treatment capacity of the system, and how to secure circulating water used for dilution and discharge of liquid radioactive waste. Therefore, this review aims to suggest an optimal method for the treatment system for liquid radioactive waste included in RWTF of Wolseong.

      • A Study on Methods to Prevent Contamination From Spreading When Dismantling Calandria Vessel in PHWR NPPs

        Haewoong Kim,Kwangsoo Park,Changkyu Kim,Gangwoo Ryu,Youngil Na,Minchul Kim 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        Wolsong Unit 1 nuclear power plant, which was permanently shut down in 2019, has a 678 MWe calandria vessel of the CANDU-6 type pressurized heavy-water reactor model. The calandria inside the vault is a horizontal cylindrical vessel made of stainless steel with a length of 7.8 m and a thickness of 28.6 mm. For the entire dismantling processes of a nuclear power plant, dismantling works cannot be performed using only one cutting technology and method, and when performing dismantling of a calandria vessel, various systems and components can be used for cutting and dismantling. The calandria vessel is located in a concrete compartment called a vault, and in order to safely dismantle the calandria vessel, the spread of radioactive contaminants from inside of the vault to the outside must be prevented. We designed dismantling processes using the laser cutting method to dismantle the calandria vessel and end shields. We must minimize the risk of internal radiation exposure to workers from aerosols derived from the thermal cutting processes. Therefore, we need a way to prevent secondary contamination from spreading outside the vault and within the reactor building. The path through which radioactive contaminants move is that the flying airborne products generated during the cutting process inside the vault where the calandria is located do not stay in place but spread outward through the opening of the RM-Deck structure at the top. Therefore, facilities or devices are needed to effectively prevent the spread of radioactive contaminants by blocking the expected movement path. By using these facilities or devices, it is possible to prevent the movement of radioactive aerosol particles between the location of the worker and the location of the cutting area where the calandria is located, thereby preventing internal exposure through the worker’s breathing. In addition, by using these, the cutting area where airborne pollutants are generated can be designed as an isolated work space to prevent the spread of radioactive contaminants. In this study, we propose a method of facilities for confining radioactive aerosol particles and preventing the spread of contamination when thermal cutting of the calandria vessel within the vault.

      • A Review on Types of Induction Melter in Radioactive Treatment Waste Facilities

        HyunMin Kim,JunKi Baik,SukWon Jung,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. The amount of these wastes must be defined in the Final Decommissioning Plan for approval of the licensing. Also, in the case of Metal radioactive waste, it is necessary to calculate the generation amount in order to treat radioactive waste at a Radioactive Waste Treatment Facility (RWTF). Since a large quantity of metal radioactive waste is generated during the decommissioning of a nuclear power plant, the application of a metal melter for reduction is considered. The metal waste is heated to a temperature above the melting point and separated into liquid and gas forms. Nuclides existing on the surface of metal waste vaporize in a melting furnace to become dust or collect in sludge. Nonvolatile nuclides such as Co, Fe and Mn remain in ingot, but other nuclides can be captured and reduced with dust and sludge. And the types of melting furnaces to be applied can be broadly classified into Atmospheric Induction Melter (AIM) and Vacuum Induction Melter (VIM). Therefore, this review intends to compare the two types of metal furnaces to be included in RWTF.

      • A Study on the Clearance Waste Disposal Measures for Decommissioning of Nuclear Power Plant

        JunKi Baik,SukWon Jung,HyunMin Kim,ChanGeun Park,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The concept of clearance is to manage radioactive waste by incineration, reclamation, or recycling as non-radioactive waste, excluding those found to have a concentration of less than the allowable concentration of clearance. Among the types of waste subject to clearance, concrete is managed by recycling and landfill, metal by recycling and reuse, combustible materials by incineration, and soil by landfill. In Korea, clearance has been implemented in earnest since 2000, and the types and quantity of waste subject to clearance are increasing. For clearance, the nuclear-related operator submits its clearance plan to the regulatory body, and the regulatory body reviews the clearance plan and notifies the operator of its suitability. Since a significant amount of radioactive waste generated when decommissioning nuclear power plants is expected to be classified as clearance waste, this study will present clearance waste disposal measures for nuclear power plant through a review of overseas cases related to clearance.

      • A Study on the Treatment of Radioactive Waste for Decommissioning of Nuclear Power Plant

        JunKi Baik,SukWon Jung,HyunMin Kim,ChanGeun Park,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.1

        The type of radioactive waste that may occur in the process of nuclear power plant dismantling can be classified into solid, liquid, gas, and mixed waste. In addition, according to the level of radioactivity, it can be divided into high level, intermediate level, low level, and clearance level waste. In the case of solid radioactive waste, it is necessary to secure disposal suitability in order to deliver it to a disposal facility, so safe and efficient treatment of a large amount of radioactive waste generated during decommissioning is one of the most important issues. For the treatment of radioactive waste generated during decommissioning, technologies in various fields such as cutting, decontamination, melting, measurement, and packaging are required. Therefore, this study intends to present and application plan for decommissioning domestic nuclear power plants through overseas case studies for the treatment of radioactive waste expected to occur during nuclear power plant decommissioning.

      • A Study on the Direction of Entering the PHWR Decommissioning Market

        JunKi Baik,SukWon Jung,HyunMin Kim,ChanGeun Park,GangWoo Ryu 한국방사성폐기물학회 2023 한국방사성폐기물학회 학술논문요약집 Vol.21 No.2

        The Wolsong unit 1 decommissioning project is the world’s first commercial pressurized heavy water reactor decommissioning project. Although there is a lot of accumulated experience and technology for decommissioning of pressurized water reactors around the world, it can be said that there is great difficulty as there is lack of prior experience and reference materials for pressurized heavy water reactor. On the other hand, if the world’s first pressurized heavy water reactor project is completed, it is possible to enter the overseas market for pressurized heavy water reactor decommissioning. It is also a good opportunity to do so. Accordingly, the current status of operation, plans, and construction of infrastructure related to decommissioning of pressurized heavy water reactors in Canada, which can be said to be the home country of pressurized heavy water reactor, were reviewed. So, this study seeks to present considerations for entering the pressurized heavy water reactors decommissioning market in the future.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼