RISS 학술연구정보서비스

검색
다국어 입력

http://chineseinput.net/에서 pinyin(병음)방식으로 중국어를 변환할 수 있습니다.

변환된 중국어를 복사하여 사용하시면 됩니다.

예시)
  • 中文 을 입력하시려면 zhongwen을 입력하시고 space를누르시면됩니다.
  • 北京 을 입력하시려면 beijing을 입력하시고 space를 누르시면 됩니다.
닫기
    인기검색어 순위 펼치기

    RISS 인기검색어

      • 무료
      • 기관 내 무료
      • 유료
      • KCI등재

        An Electroosmotically-driven Micromixer Modified for High Miniaturized Microchannels Using Surface Micromachining

        Reza Hadjiaghaie Vafaie,Mahnaz Mehdipoor,Adel Pourmand,Elnaz Poorreza,Habib Badri Ghavifekr 한국생물공학회 2013 Biotechnology and Bioprocess Engineering Vol.18 No.3

        In order to offer the ability of smaller volumes and high throughput in Lab-On-a-Chip and micro Total Analysis Systems devices, more miniaturized components are needed. Due to a low Reynolds number on the microscale,the mixing process can be particularly troublesome. This problem is compounded by the fact that more miniaturization can be challenging in a microfluidic system. In such a case, electroosmotic (EO) force is an efficient force to perturb low Reynolds number fluid. In this paper,a novel Micro-Electro-Mechanical-Systems (MEMS) based fabrication for microfluidic devices, and a more miniaturized micromixer are presented. The proposed technology process requires the covering of excited electrode patterns by a thin Silicon-Nitride (Si3N4) insulator layer. Fabrication parameters such as Low Pressure Chemical Vapor Deposition (LPCVD)Si3N4 deposition effect, and height of the Phosphor Silicate Glass (PSG) sacrificial layer were investigated for the electroosmotically-driven mixer. Particle tracing for fluid flow was illustrated, the particles were stretched and folded for a long time, which was a proof of chaotic regime. Finite Element Analysis (FEA) revealed that the mixer with covered electrodes provides the high mixing efficiency of above 90% for a 96 μm long microchannel. Using a silicon nitride insulator layer reduces high electric field gradient at sharp corners and edges of the electrodes, leading to the elimination of unwanted electrolyte effects. Thus, the excitation and geometrical parameters were optimized for the micromixer.

      연관 검색어 추천

      이 검색어로 많이 본 자료

      활용도 높은 자료

      해외이동버튼